

 Mithril UI

 v0.1.2

 Table of contents

 	Mithril UI

 	Changelog

 	LICENSE

 	
 Modules

 	MithrilUI

 	MithrilUI.AI.ComponentRegistry

 	MithrilUI.AI.ComponentSelector

 	MithrilUI.Components

 	MithrilUI.MCP.Server

 	MithrilUI.MCP.Tools

 	MithrilUiWeb

 	MithrilUiWeb.CoreComponents

 	MithrilUiWeb.Endpoint

 	MithrilUiWeb.ErrorHTML

 	MithrilUiWeb.ErrorJSON

 	MithrilUiWeb.Gettext

 	MithrilUiWeb.Layouts

 	MithrilUiWeb.PageController

 	MithrilUiWeb.PageHTML

 	MithrilUiWeb.Router

 	MithrilUiWeb.Storybook

 	MithrilUiWeb.Telemetry

 	Storybook.Components

 	Storybook.Components.Actions

 	Storybook.Components.DataDisplay

 	Storybook.Components.Extended

 	Storybook.Components.Feedback

 	Storybook.Components.Forms

 	Storybook.Components.Navigation

 	Storybook.Components.Overlays

 	Storybook.Components.Typography

 	Storybook.Components.Utility

 	Storybook.Root

 	Components

 	MithrilUI.Components.Accordion

 	MithrilUI.Components.Alert

 	MithrilUI.Components.Avatar

 	MithrilUI.Components.Badge

 	MithrilUI.Components.Banner

 	MithrilUI.Components.Blockquote

 	MithrilUI.Components.BottomNavigation

 	MithrilUI.Components.Breadcrumb

 	MithrilUI.Components.Button

 	MithrilUI.Components.ButtonGroup

 	MithrilUI.Components.Card

 	MithrilUI.Components.Carousel

 	MithrilUI.Components.ChatBubble

 	MithrilUI.Components.Checkbox

 	MithrilUI.Components.Clipboard

 	MithrilUI.Components.Code

 	MithrilUI.Components.Drawer

 	MithrilUI.Components.Dropdown

 	MithrilUI.Components.FileInput

 	MithrilUI.Components.Footer

 	MithrilUI.Components.Gallery

 	MithrilUI.Components.Heading

 	MithrilUI.Components.Indicator

 	MithrilUI.Components.Input

 	MithrilUI.Components.Kbd

 	MithrilUI.Components.Link

 	MithrilUI.Components.ListGroup

 	MithrilUI.Components.Modal

 	MithrilUI.Components.Navbar

 	MithrilUI.Components.Pagination

 	MithrilUI.Components.Popover

 	MithrilUI.Components.Progress

 	MithrilUI.Components.Radio

 	MithrilUI.Components.Range

 	MithrilUI.Components.Rating

 	MithrilUI.Components.Select

 	MithrilUI.Components.Sidebar

 	MithrilUI.Components.Skeleton

 	MithrilUI.Components.SpeedDial

 	MithrilUI.Components.Spinner

 	MithrilUI.Components.Stepper

 	MithrilUI.Components.Table

 	MithrilUI.Components.Tabs

 	MithrilUI.Components.Text

 	MithrilUI.Components.Textarea

 	MithrilUI.Components.ThemeSwitcher

 	MithrilUI.Components.Timeline

 	MithrilUI.Components.Toast

 	MithrilUI.Components.Toggle

 	MithrilUI.Components.Tooltip

 	Theme

 	MithrilUI.Theme

 	MithrilUI.Theme.Generator

 	Utilities

 	MithrilUI.Animations

 	MithrilUI.Helpers

 	
 Mix Tasks

 	mix mithril_ui.gen.themes

 	mix mithril_ui.install

 	mix mithril_ui.mcp

 Mithril UI

[image: Hex.pm]
[image: Docs]
[image: License]
A comprehensive Phoenix LiveView component library built with DaisyUI theming and Flowbite-inspired designs.
Features
	50+ Components - Actions, Forms, Feedback, Data Display, Navigation, Overlays, Typography, and more
	DaisyUI Theming - 35 built-in themes with custom theme support
	Phoenix LiveView - Built for LiveView with full HEEx template support
	Accessible - WAI-ARIA compliant components
	AI-Ready - Component metadata and schemas for AI-assisted development

Installation
Add mithril_ui to your list of dependencies in mix.exs:
def deps do
 [
 {:mithril_ui, "~> 0.1.0"}
]
end
Then run the installer:
mix deps.get
mix mithril_ui.install

Configure Tailwind CSS
For Tailwind CSS to properly compile the DaisyUI classes used by Mithril UI components, you must add the library to your Tailwind source paths.
For Tailwind CSS v4 (with @source directive):
Add the following to your assets/css/app.css:
@source "../../deps/mithril_ui";
For Tailwind CSS v3 (with tailwind.config.js):
Add the path to the content array in your tailwind.config.js:
module.exports = {
 content: [
 // ... your existing paths
 "../deps/mithril_ui/**/*.ex",
],
 // ...
}
Important: Without this configuration, DaisyUI utility classes used by Mithril UI components (like modal-box, card-body, etc.) will not be generated, resulting in missing styles.

Quick Start
1. Import Components
In your my_app_web.ex, add the components to your helpers:
defmodule MyAppWeb do
 defp html_helpers do
 quote do
 use MithrilUI.Components
 # ... other imports
 end
 end
end
2. Use Components
<.button variant="primary">Click me</.button>

<.card>
 <:header>Card Title</:header>
 <:body>Card content goes here.</:body>
 <:footer>
 <.button size="sm">Action</.button>
 </:footer>
</.card>

<.modal id="my-modal">
 <:title>Confirm</:title>
 <p>Are you sure?</p>
 <:actions>
 <.button phx-click={hide_modal("my-modal")}>Cancel</.button>
 <.button variant="primary">Confirm</.button>
 </:actions>
</.modal>
Component Categories
Actions
	button - Buttons with variants, sizes, and states
	button_group - Grouped button sets
	dropdown - Dropdown menus

Forms
	input - Text inputs with validation
	textarea - Multi-line text input
	select - Dropdown selection
	checkbox - Checkbox inputs
	radio - Radio button groups
	toggle - Toggle switches
	range - Range sliders
	file_input - File upload inputs

Feedback
	alert - Alert messages
	toast - Toast notifications
	modal - Modal dialogs
	drawer - Slide-out panels
	progress - Progress bars
	spinner - Loading spinners
	skeleton - Content placeholders

Data Display
	card - Content cards
	table - Data tables
	avatar - User avatars
	badge - Status badges
	accordion - Collapsible sections
	list_group - Vertical lists
	timeline - Event timelines

Navigation
	navbar - Top navigation
	sidebar - Side navigation
	breadcrumb - Breadcrumb trails
	tabs - Tab navigation
	pagination - Page navigation
	bottom_navigation - Mobile bottom nav

Overlays
	tooltip - Hover tooltips
	popover - Rich popovers

Typography
	heading - Headings h1-h6
	text - Styled text
	link - Anchor links
	blockquote - Quotations
	code - Code blocks
	kbd - Keyboard keys

Extended
	rating - Star ratings
	stepper - Step progress
	indicator - Status indicators
	chat_bubble - Chat messages
	footer - Page footers
	banner - Announcement banners
	carousel - Image carousels
	gallery - Image galleries

Utility
	theme_switcher - Theme selection
	clipboard - Copy to clipboard
	speed_dial - Floating action buttons

Theming
Mithril UI uses DaisyUI for theming. Configure themes in config/mithril_ui.exs:
config :mithril_ui,
 default_theme: "light",
 dark_theme: "dark",
 builtin_themes: :all
Custom Themes
Create custom themes with mix mithril_ui.gen.themes:
config :mithril_ui,
 themes: [
 %{
 name: "corporate",
 color_scheme: :light,
 colors: %{
 primary: "#4F46E5",
 secondary: "#7C3AED",
 accent: "#F59E0B"
 }
 }
]
AI Integration
Mithril UI includes AI-friendly component metadata for AI-assisted development:
List all components
MithrilUI.AI.ComponentSelector.list_components()

Get component suggestions
MithrilUI.AI.ComponentSelector.suggest_components("form submit button")

Get component schema
MithrilUI.AI.ComponentSelector.get_schema(:button)

Export JSON for AI tools
MithrilUI.AI.ComponentSelector.export_json()
Mix Tasks
	mix mithril_ui.install - Install Mithril UI in your project
	mix mithril_ui.gen.themes - Generate CSS from custom themes
	mix mithril_ui.mcp - Start MCP server for AI integration

AI Integration (MCP)
Mithril UI includes an MCP server for AI assistants like Claude Code.
Setup - Add to .mcp.json in your project:
{
 "mcpServers": {
 "mithril-ui": {
 "command": "mix",
 "args": ["mithril_ui.mcp"]
 }
 }
}
Available tools: list_components, get_component, suggest_components, get_examples, list_categories, list_themes, get_related
Documentation
	HexDocs
	Storybook (run mix phx.server)

Requirements
	Elixir ~> 1.14
	Phoenix ~> 1.7
	Phoenix LiveView ~> 1.0
	DaisyUI ~> 4.0 (npm)

License
MIT License - see LICENSE for details.

 Changelog

All notable changes to Mithril UI will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
[Unreleased]
[0.1.2] - 2026-01-13
Added
	Documentation for required Tailwind CSS source configuration in README

Fixed
	Carousel component HEEx template formatting
	MCP server version lookup for CI compatibility
	Test module loading for function export checks

[0.1.1] - 2026-01-09
Fixed
	Minor bug fixes and improvements

[0.1.0] - 2025-01-06
Added
Core Infrastructure
	MithrilUI main module with component imports
	MithrilUI.Components macro for easy component usage
	MithrilUI.Theme module for theme configuration
	MithrilUI.Theme.Generator for custom theme CSS generation
	MithrilUI.Animations module with LiveView.JS animation presets
	MithrilUI.Helpers module with utility functions

Action Components
	button - Buttons with 10 variants, 4 sizes, and loading/disabled states
	button_group - Horizontal and vertical button groups
	dropdown - Dropdown menus with positioning options

Form Components
	input - Text inputs with validation, icons, and addons
	textarea - Multi-line text inputs
	select - Dropdown selection fields
	checkbox - Checkbox inputs with indeterminate state
	radio - Radio button groups
	toggle - Toggle switches
	range - Range slider inputs
	file_input - File upload inputs

Feedback Components
	alert - Alert messages with 4 variants and dismissible option
	toast - Toast notifications with positioning
	modal - Modal dialogs with sizes and responsive option
	drawer - Slide-out panels from all sides
	progress - Progress bars with indeterminate option
	spinner - Loading spinners
	skeleton - Content placeholder skeletons

Data Display Components
	card - Content cards with header, body, footer slots
	table - Data tables with sorting, zebra stripes, pinning
	avatar - User avatars with groups and indicators
	badge - Status badges with all color variants
	accordion - Collapsible content sections
	list_group - Vertical item lists
	timeline - Event timelines

Navigation Components
	navbar - Responsive top navigation
	sidebar - Side navigation with collapsible sections
	breadcrumb - Breadcrumb navigation trails
	tabs - Tab navigation with variants
	pagination - Page navigation controls
	bottom_navigation - Mobile bottom navigation

Overlay Components
	tooltip - Hover tooltips with positioning
	popover - Rich content popovers

Typography Components
	heading - Semantic headings h1-h6
	text - Styled paragraph and inline text
	link - Anchor links with variants
	blockquote - Styled quotations with citations
	code - Inline and block code display
	kbd - Keyboard key display

Extended Components
	rating - Star ratings with multiple shapes
	stepper - Step progress indicators
	indicator - Status indicators and dots
	chat_bubble - Chat message bubbles
	footer - Page footers with navigation
	banner - Announcement banners
	carousel - Image carousels with navigation
	gallery - Image gallery grids

Utility Components
	theme_switcher - Theme selection dropdowns and toggles
	clipboard - Copy to clipboard functionality
	speed_dial - Floating action button menus

Mix Tasks
	mix mithril_ui.install - Project installation task
	mix mithril_ui.gen.themes - Theme CSS generation task

AI Documentation
	MithrilUI.AI.ComponentRegistry - Component metadata registry
	MithrilUI.AI.ComponentSelector - AI-friendly component selection API
	JSON schema export for all components

Storybook
	Phoenix Storybook integration
	Stories for all 50+ components
	Interactive component playground

Infrastructure
	1060 unit tests with 100% component coverage
	DaisyUI 4.x theming support
	35 built-in DaisyUI themes
	Custom theme generation
	Phoenix LiveView 1.0 compatibility
	Accessible components with WAI-ARIA support

 LICENSE

MIT License

Copyright (c) 2025 Cameron Lockhart

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

MithrilUI

Mithril UI - A comprehensive Phoenix LiveView component library.
"As light as a feather, and as hard as dragon scales" - Components of legendary strength

Features
	50+ Components - Flowbite-inspired components for Phoenix LiveView
	DaisyUI Theming - 35 built-in themes + custom theme support
	Phoenix Form Integration - Works seamlessly with Phoenix.HTML.FormField
	Animation System - LiveView.JS presets for smooth transitions
	AI-Friendly - Rich semantic metadata for AI tool selection
	Phoenix Storybook - Interactive documentation for all components

Quick Start
Add Mithril UI to your dependencies:
{:mithril_ui, "~> 0.1.0"}
Import components in your module:
use MithrilUI.Components
Or import specific categories:
use MithrilUI.Components, only: [:forms, :feedback]
Configuration
config/config.exs
config :mithril_ui,
 default_theme: "light",
 dark_theme: "dark",
 available_themes: :all
Component Categories
	Actions - Button, ButtonGroup, Dropdown, SpeedDial, Clipboard
	Navigation - Navbar, Sidebar, Breadcrumb, Pagination, Tabs, BottomNavigation
	Data Display - Card, Table, Avatar, Badge, Accordion, ListGroup, Timeline
	Feedback - Alert, Toast, Modal, Drawer, Progress, Spinner, Skeleton
	Forms - Input, Textarea, Select, Checkbox, Radio, Toggle, Range, FileInput
	Typography - Heading, Text, Link, Blockquote, Code, Kbd

MithrilUI.AI.ComponentRegistry

Registry of all Mithril UI components with AI-friendly metadata.
Each component includes:
	name - Component identifier
	module - Elixir module path
	category - Component category (actions, forms, feedback, etc.)
	description - Brief description of the component
	use_when - Scenarios when this component is appropriate
	do_not_use_when - Scenarios when another component is better
	related - Related components that work well together
	alternatives - Alternative components for similar use cases
	variants - Available style variants
	a11y - Accessibility information

 Summary

 Functions

 all_components()

 Returns all component metadata.

 by_category(category)

 Returns all components in a specific category.

 categories()

 Returns list of all categories.

 component_names()

 Returns list of all component names.

 get_component(name)

 Returns component metadata by name.

 Functions

 all_components()

Returns all component metadata.

 by_category(category)

Returns all components in a specific category.

 categories()

Returns list of all categories.

 component_names()

Returns list of all component names.

 get_component(name)

Returns component metadata by name.

MithrilUI.AI.ComponentSelector

AI-friendly interface for component selection and documentation.
This module provides structured data and functions for AI agents to:
	List all available components
	Get component metadata and schemas
	Suggest appropriate components based on context
	Generate usage examples

Usage
List all components:
MithrilUI.AI.ComponentSelector.list_components()
Get component schema:
MithrilUI.AI.ComponentSelector.get_schema(:button)
Suggest components for a use case:
MithrilUI.AI.ComponentSelector.suggest_components("form submission")

 Summary

 Functions

 all_schemas()

 Returns all component schemas as a map.

 export_json(opts \\ [])

 Exports all component metadata to JSON format.

 get_related(component_name)

 Returns related components for a given component.

 get_schema(component_name)

 Returns the JSON schema for a component.

 get_usage_examples(component_name)

 Returns usage examples for a component.

 list_categories()

 Returns all component categories with descriptions.

 list_components(opts \\ [])

 Returns a list of all components with their metadata.

 suggest_components(context)

 Suggests components based on a natural language description or context.

 Functions

 all_schemas()

Returns all component schemas as a map.
Useful for generating documentation or exporting to JSON.

 export_json(opts \\ [])

Exports all component metadata to JSON format.
Options
	:pretty - Format JSON with indentation (default: true)

 get_related(component_name)

Returns related components for a given component.
Useful for suggesting alternatives or complementary components.

 get_schema(component_name)

Returns the JSON schema for a component.
The schema includes:
	Component metadata (name, description, category)
	Available props with types and defaults
	Variants and sizes
	Accessibility information
	Usage guidance

Examples
iex> get_schema(:button)
%{
 "$schema" => "https://mithrilui.dev/schemas/component/v1",
 "component" => "button",
 ...
}

 get_usage_examples(component_name)

Returns usage examples for a component.
Examples
iex> get_usage_examples(:button)
[
 %{
 name: "Basic button",
 code: "<.button>Click me</.button>"
 },
 ...
]

 list_categories()

Returns all component categories with descriptions.

 list_components(opts \\ [])

Returns a list of all components with their metadata.
Options
	:category - Filter by category (e.g., :forms, :feedback)
	:format - Output format (:full, :summary, :names_only)

Examples
iex> list_components()
[%{name: :button, category: :actions, ...}, ...]

iex> list_components(category: :forms)
[%{name: :input, ...}, %{name: :select, ...}, ...]

iex> list_components(format: :names_only)
[:button, :input, :select, ...]

 suggest_components(context)

Suggests components based on a natural language description or context.
Returns components sorted by relevance to the given context.
Examples
iex> suggest_components("submit form")
[%{name: :button, relevance: :high, reason: "Button for form submission"}, ...]

iex> suggest_components("display user list")
[%{name: :table, ...}, %{name: :list_group, ...}]

iex> suggest_components("loading indicator")
[%{name: :spinner, ...}, %{name: :skeleton, ...}]

MithrilUI.Components

Main entry point for importing Mithril UI components.
Usage
Import all components:
use MithrilUI.Components
Import specific categories:
use MithrilUI.Components, only: [:forms, :feedback]
Import individual components:
import MithrilUI.Components.Button
import MithrilUI.Components.Card
Available Categories
	:actions - Button, ButtonGroup, Dropdown
	:navigation - Navbar, Sidebar, Breadcrumb, Pagination, Tabs, BottomNavigation
	:data_display - Card, Table, Avatar, Badge, Accordion, ListGroup, Timeline
	:feedback - Alert, Toast, Modal, Drawer, Progress, Spinner, Skeleton
	:forms - Input, Textarea, Select, Checkbox, Radio, Toggle, Range, FileInput
	:typography - Heading, Text, Link, Blockquote, Code, Kbd

MithrilUI.MCP.Server

MCP (Model Context Protocol) server for Mithril UI.
Provides AI assistants with access to component metadata, documentation,
and intelligent component suggestions.
Protocol
Uses JSON-RPC 2.0 over stdio, compatible with Claude Code and other MCP clients.
Available Tools
	list_components - List all components or filter by category
	get_component - Get detailed schema for a specific component
	suggest_components - Natural language search for components
	get_examples - Get usage examples for a component
	list_categories - List all component categories
	list_themes - List available DaisyUI themes

 Summary

 Functions

 server_info()

 Returns server info for the MCP protocol.

 start()

 Starts the MCP server, reading from stdin and writing to stdout.

 Functions

 server_info()

Returns server info for the MCP protocol.

 start()

Starts the MCP server, reading from stdin and writing to stdout.

MithrilUI.MCP.Tools

MCP tool implementations for Mithril UI.
Wraps the ComponentRegistry and ComponentSelector modules to provide
AI-friendly access to component metadata.

 Summary

 Functions

 call_tool(name, args)

 Calls a tool by name with the given arguments.

 list_tools()

 Returns the list of available MCP tools.

 Functions

 call_tool(name, args)

Calls a tool by name with the given arguments.

 list_tools()

Returns the list of available MCP tools.

MithrilUiWeb

The entrypoint for defining your web interface, such
as controllers, components, channels, and so on.
This can be used in your application as:
use MithrilUiWeb, :controller
use MithrilUiWeb, :html
The definitions below will be executed for every controller,
component, etc, so keep them short and clean, focused
on imports, uses and aliases.
Do NOT define functions inside the quoted expressions
below. Instead, define additional modules and import
those modules here.

 Summary

 Functions

 __using__(which)

 When used, dispatch to the appropriate controller/live_view/etc.

 channel()

 controller()

 html()

 live_component()

 live_view()

 router()

 static_paths()

 verified_routes()

 Functions

 __using__(which)

 (macro)

When used, dispatch to the appropriate controller/live_view/etc.

 channel()

 controller()

 html()

 live_component()

 live_view()

 router()

 static_paths()

 verified_routes()

MithrilUiWeb.CoreComponents

Provides core UI components.
At first glance, this module may seem daunting, but its goal is to provide
core building blocks for your application, such as tables, forms, and
inputs. The components consist mostly of markup and are well-documented
with doc strings and declarative assigns. You may customize and style
them in any way you want, based on your application growth and needs.
The foundation for styling is Tailwind CSS, a utility-first CSS framework,
augmented with daisyUI, a Tailwind CSS plugin that provides UI components
and themes. Here are useful references:
	daisyUI - a good place to get
started and see the available components.

	Tailwind CSS - the foundational framework
we build on. You will use it for layout, sizing, flexbox, grid, and
spacing.

	Heroicons - see icon/1 for usage.

	Phoenix.Component -
the component system used by Phoenix. Some components, such as <.link>
and <.form>, are defined there.

 Summary

 Functions

 button(assigns)

 Renders a button with navigation support.

 flash(assigns)

 Renders flash notices.

 header(assigns)

 Renders a header with title.

 hide(js \\ %JS{}, selector)

 icon(assigns)

 Renders a Heroicon.

 input(assigns)

 Renders an input with label and error messages.

 list(assigns)

 Renders a data list.

 show(js \\ %JS{}, selector)

 table(assigns)

 Renders a table with generic styling.

 translate_error(arg)

 Translates an error message using gettext.

 translate_errors(errors, field)

 Translates the errors for a field from a keyword list of errors.

 Functions

 button(assigns)

Renders a button with navigation support.
Examples
<.button>Send!</.button>
<.button phx-click="go" variant="primary">Send!</.button>
<.button navigate={~p"/"}>Home</.button>
Attributes
	class (:any)
	variant (:string) - Must be one of "primary".
	Global attributes are accepted. Supports all globals plus: ["href", "navigate", "patch", "method", "download", "name", "value", "disabled"].

Slots
	inner_block (required)

 flash(assigns)

Renders flash notices.
Examples
<.flash kind={:info} flash={@flash} />
<.flash kind={:info} phx-mounted={show("#flash")}>Welcome Back!</.flash>
Attributes
	id (:string) - the optional id of flash container.
	flash (:map) - the map of flash messages to display. Defaults to %{}.
	title (:string) - Defaults to nil.
	kind (:atom) - used for styling and flash lookup. Must be one of :info, or :error.
	Global attributes are accepted. the arbitrary HTML attributes to add to the flash container.

Slots
	inner_block - the optional inner block that renders the flash message.

 header(assigns)

Renders a header with title.
Slots
	inner_block (required)
	subtitle
	actions

 hide(js \\ %JS{}, selector)

 icon(assigns)

Renders a Heroicon.
Heroicons come in three styles – outline, solid, and mini.
By default, the outline style is used, but solid and mini may
be applied by using the -solid and -mini suffix.
You can customize the size and colors of the icons by setting
width, height, and background color classes.
Icons are extracted from the deps/heroicons directory and bundled within
your compiled app.css by the plugin in assets/vendor/heroicons.js.
Examples
<.icon name="hero-x-mark" />
<.icon name="hero-arrow-path" class="ml-1 size-3 motion-safe:animate-spin" />
Attributes
	name (:string) (required)
	class (:any) - Defaults to "size-4".

 input(assigns)

Renders an input with label and error messages.
A Phoenix.HTML.FormField may be passed as argument,
which is used to retrieve the input name, id, and values.
Otherwise all attributes may be passed explicitly.
Types
This function accepts all HTML input types, considering that:
	You may also set type="select" to render a <select> tag

	type="checkbox" is used exclusively to render boolean values

	For live file uploads, see Phoenix.Component.live_file_input/1

See https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
for more information. Unsupported types, such as hidden and radio,
are best written directly in your templates.
Examples
<.input field={@form[:email]} type="email" />
<.input name="my-input" errors={["oh no!"]} />
Attributes
	id (:any) - Defaults to nil.
	name (:any)
	label (:string) - Defaults to nil.
	value (:any)
	type (:string) - Defaults to "text". Must be one of "checkbox", "color", "date", "datetime-local", "email", "file", "month", "number", "password", "search", "select", "tel", "text", "textarea", "time", "url", or "week".
	field (Phoenix.HTML.FormField) - a form field struct retrieved from the form, for example: @form[:email].
	errors (:list) - Defaults to [].
	checked (:boolean) - the checked flag for checkbox inputs.
	prompt (:string) - the prompt for select inputs. Defaults to nil.
	options (:list) - the options to pass to Phoenix.HTML.Form.options_for_select/2.
	multiple (:boolean) - the multiple flag for select inputs. Defaults to false.
	class (:any) - the input class to use over defaults. Defaults to nil.
	error_class (:string) - the input error class to use over defaults. Defaults to nil.
	Global attributes are accepted. Supports all globals plus: ["accept", "autocomplete", "capture", "cols", "disabled", "form", "list", "max", "maxlength", "min", "minlength", "multiple", "pattern", "placeholder", "readonly", "required", "rows", "size", "step"].

 list(assigns)

Renders a data list.
Examples
<.list>
 <:item title="Title">{@post.title}</:item>
 <:item title="Views">{@post.views}</:item>
</.list>
Slots
	item (required) - Accepts attributes:	title (:string) (required)

 show(js \\ %JS{}, selector)

 table(assigns)

Renders a table with generic styling.
Examples
<.table id="users" rows={@users}>
 <:col :let={user} label="id">{user.id}</:col>
 <:col :let={user} label="username">{user.username}</:col>
</.table>
Attributes
	id (:string) (required)
	rows (:list) (required)
	row_id (:any) - the function for generating the row id. Defaults to nil.
	row_click (:any) - the function for handling phx-click on each row. Defaults to nil.
	row_item (:any) - the function for mapping each row before calling the :col and :action slots. Defaults to &Function.identity/1.

Slots
	col (required) - Accepts attributes:	label (:string)

	action - the slot for showing user actions in the last table column.

 translate_error(arg)

Translates an error message using gettext.

 translate_errors(errors, field)

Translates the errors for a field from a keyword list of errors.

MithrilUiWeb.Endpoint

 Summary

 Functions

 broadcast(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast/3.

 broadcast!(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast!/3.

 broadcast_from(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast_from/4.

 broadcast_from!(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast_from!/4.

 call(conn, opts)

 Callback implementation for Plug.call/2.

 child_spec(opts)

 Returns the child specification to start the endpoint
under a supervision tree.

 config(key, default \\ nil)

 Returns the endpoint configuration for key

 config_change(changed, removed)

 Reloads the configuration given the application environment changes.

 host()

 Returns the host for the given endpoint.

 init(opts)

 Callback implementation for Plug.init/1.

 local_broadcast(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.local_broadcast/3.

 local_broadcast_from(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.local_broadcast_from/4.

 path(path)

 Generates the path information when routing to this endpoint.

 script_name()

 Generates the script name.

 server_info(scheme)

 Returns the address and port that the server is running on

 start_link(opts \\ [])

 Starts the endpoint supervision tree.

 static_integrity(path)

 Generates a base64-encoded cryptographic hash (sha512) to a static file
in priv/static. Meant to be used for Subresource Integrity with CDNs.

 static_lookup(path)

 Returns a two item tuple with the first item being the static_path
and the second item being the static_integrity.

 static_path(path)

 Generates a route to a static file in priv/static.

 static_url()

 Generates the static URL without any path information.

 struct_url()

 Generates the endpoint base URL but as a URI struct.

 subscribe(topic, opts \\ [])

 Callback implementation for Phoenix.Endpoint.subscribe/2.

 unsubscribe(topic)

 Callback implementation for Phoenix.Endpoint.unsubscribe/1.

 url()

 Generates the endpoint base URL without any path information.

 Functions

 broadcast(topic, event, msg)

Callback implementation for Phoenix.Endpoint.broadcast/3.

 broadcast!(topic, event, msg)

Callback implementation for Phoenix.Endpoint.broadcast!/3.

 broadcast_from(from, topic, event, msg)

Callback implementation for Phoenix.Endpoint.broadcast_from/4.

 broadcast_from!(from, topic, event, msg)

Callback implementation for Phoenix.Endpoint.broadcast_from!/4.

 call(conn, opts)

Callback implementation for Plug.call/2.

 child_spec(opts)

Returns the child specification to start the endpoint
under a supervision tree.

 config(key, default \\ nil)

Returns the endpoint configuration for key
Returns default if the key does not exist.

 config_change(changed, removed)

Reloads the configuration given the application environment changes.

 host()

Returns the host for the given endpoint.

 init(opts)

Callback implementation for Plug.init/1.

 local_broadcast(topic, event, msg)

Callback implementation for Phoenix.Endpoint.local_broadcast/3.

 local_broadcast_from(from, topic, event, msg)

Callback implementation for Phoenix.Endpoint.local_broadcast_from/4.

 path(path)

Generates the path information when routing to this endpoint.

 script_name()

Generates the script name.

 server_info(scheme)

Returns the address and port that the server is running on

 start_link(opts \\ [])

Starts the endpoint supervision tree.
All other options are merged into the endpoint configuration.

 static_integrity(path)

Generates a base64-encoded cryptographic hash (sha512) to a static file
in priv/static. Meant to be used for Subresource Integrity with CDNs.

 static_lookup(path)

Returns a two item tuple with the first item being the static_path
and the second item being the static_integrity.

 static_path(path)

Generates a route to a static file in priv/static.

 static_url()

Generates the static URL without any path information.
It uses the configuration under :static_url to generate
such. It falls back to :url if :static_url is not set.

 struct_url()

Generates the endpoint base URL but as a URI struct.
It uses the configuration under :url to generate such.
Useful for manipulating the URL data and passing it to
URL helpers.

 subscribe(topic, opts \\ [])

Callback implementation for Phoenix.Endpoint.subscribe/2.

 unsubscribe(topic)

Callback implementation for Phoenix.Endpoint.unsubscribe/1.

 url()

Generates the endpoint base URL without any path information.
It uses the configuration under :url to generate such.

MithrilUiWeb.ErrorHTML

This module is invoked by your endpoint in case of errors on HTML requests.
See config/config.exs.

 Summary

 Functions

 render(template, assigns)

 Functions

 render(template, assigns)

MithrilUiWeb.ErrorJSON

This module is invoked by your endpoint in case of errors on JSON requests.
See config/config.exs.

 Summary

 Functions

 render(template, assigns)

 Functions

 render(template, assigns)

MithrilUiWeb.Gettext

A module providing Internationalization with a gettext-based API.
By using Gettext, your module compiles translations
that you can use in your application. To use this Gettext backend module,
call use Gettext and pass it as an option:
use Gettext, backend: MithrilUiWeb.Gettext

Simple translation
gettext("Here is the string to translate")

Plural translation
ngettext("Here is the string to translate",
 "Here are the strings to translate",
 3)

Domain-based translation
dgettext("errors", "Here is the error message to translate")
See the Gettext Docs for detailed usage.

 Summary

 Functions

 handle_missing_bindings(exception, incomplete)

 Callback implementation for Gettext.Backend.handle_missing_bindings/2.

 handle_missing_plural_translation(locale, domain, msgctxt, msgid, msgid_plural, n, bindings)

 Callback implementation for Gettext.Backend.handle_missing_plural_translation/7.

 handle_missing_translation(locale, domain, msgctxt, msgid, bindings)

 Callback implementation for Gettext.Backend.handle_missing_translation/5.

 Functions

 handle_missing_bindings(exception, incomplete)

Callback implementation for Gettext.Backend.handle_missing_bindings/2.

 handle_missing_plural_translation(locale, domain, msgctxt, msgid, msgid_plural, n, bindings)

Callback implementation for Gettext.Backend.handle_missing_plural_translation/7.

 handle_missing_translation(locale, domain, msgctxt, msgid, bindings)

Callback implementation for Gettext.Backend.handle_missing_translation/5.

MithrilUiWeb.Layouts

This module holds layouts and related functionality
used by your application.

 Summary

 Functions

 app(assigns)

 Renders your app layout.

 flash_group(assigns)

 Shows the flash group with standard titles and content.

 root(assigns)

 theme_toggle(assigns)

 Provides dark vs light theme toggle based on themes defined in app.css.

 Functions

 app(assigns)

Renders your app layout.
This function is typically invoked from every template,
and it often contains your application menu, sidebar,
or similar.
Examples
<Layouts.app flash={@flash}>
 <h1>Content</h1>
</Layouts.app>
Attributes
	flash (:map) (required) - the map of flash messages.
	current_scope (:map) - the current scope. Defaults to nil.

Slots
	inner_block (required)

 flash_group(assigns)

Shows the flash group with standard titles and content.
Examples
<.flash_group flash={@flash} />
Attributes
	flash (:map) (required) - the map of flash messages.
	id (:string) - the optional id of flash container. Defaults to "flash-group".

 root(assigns)

 theme_toggle(assigns)

Provides dark vs light theme toggle based on themes defined in app.css.
See <head> in root.html.heex which applies the theme before page load.

MithrilUiWeb.PageController

 Summary

 Functions

 home(conn, params)

 Functions

 home(conn, params)

MithrilUiWeb.PageHTML

This module contains pages rendered by PageController.
See the page_html directory for all templates available.

 Summary

 Functions

 home(assigns)

 Functions

 home(assigns)

MithrilUiWeb.Router

 Summary

 Functions

 api(conn, _)

 browser(conn, _)

 call(conn, opts)

 Callback invoked by Plug on every request.

 formatted_routes(_)

 Callback implementation for Phoenix.VerifiedRoutes.formatted_routes/1.

 init(opts)

 Callback required by Plug that initializes the router
for serving web requests.

 storybook_assets(conn, _)

 storybook_browser(conn, _)

 verified_route?(_, split_path)

 Callback implementation for Phoenix.VerifiedRoutes.verified_route?/2.

 Functions

 api(conn, _)

 browser(conn, _)

 call(conn, opts)

Callback invoked by Plug on every request.

 formatted_routes(_)

Callback implementation for Phoenix.VerifiedRoutes.formatted_routes/1.

 init(opts)

Callback required by Plug that initializes the router
for serving web requests.

 storybook_assets(conn, _)

 storybook_browser(conn, _)

 verified_route?(_, split_path)

Callback implementation for Phoenix.VerifiedRoutes.verified_route?/2.

MithrilUiWeb.Storybook

Phoenix Storybook configuration for Mithril UI component library.
Provides interactive documentation and visual testing for all components
with support for all DaisyUI themes.

 Summary

 Functions

 asset_hash(atom)

 load_story(story_path)

 Functions

 asset_hash(atom)

 load_story(story_path)

MithrilUiWeb.Telemetry

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 metrics()

 start_link(arg)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 metrics()

 start_link(arg)

Storybook.Components

Storybook.Components.Actions

Storybook.Components.DataDisplay

Storybook.Components.Extended

Storybook.Components.Feedback

Storybook.Components.Forms

Storybook.Components.Navigation

Storybook.Components.Overlays

Storybook.Components.Typography

Storybook.Components.Utility

Storybook.Root

MithrilUI.Components.Accordion

Accordion component for collapsible content sections.
Examples
Basic accordion:
<.accordion>
 <:item title="Section 1">Content for section 1</:item>
 <:item title="Section 2">Content for section 2</:item>
</.accordion>
With icons:
<.accordion icon="arrow">
 <:item title="FAQ 1">Answer 1</:item>
 <:item title="FAQ 2">Answer 2</:item>
</.accordion>
DaisyUI Classes
	collapse - Base collapse styling
	collapse-arrow - Arrow icon indicator
	collapse-plus - Plus/minus icon indicator
	collapse-open - Force open state
	collapse-close - Force closed state

 Summary

 Functions

 accordion(assigns)

 Renders an accordion with multiple collapsible sections.

 collapse(assigns)

 Renders a single collapsible section (standalone collapse).

 Functions

 accordion(assigns)

 @spec accordion(map()) :: Phoenix.LiveView.Rendered.t()

Renders an accordion with multiple collapsible sections.
Attributes
	:name - Radio group name for single-open behavior. Auto-generated if not provided.
	:icon - Icon style: arrow, plus, none. Defaults to "arrow".
	:join - Join items together visually. Defaults to true.
	:class - Additional CSS classes.

Slots
	:item - Accordion items with :title attribute.	:title - Section header text (required).
	:open - Whether section is initially open.
	:class - Additional classes for the item.

Examples
<.accordion icon="plus">
 <:item title="What is this?">
 This is an accordion component.
 </:item>
 <:item title="How does it work?" open>
 Click the header to expand or collapse.
 </:item>
</.accordion>
Attributes
	name (:string) - Defaults to nil.
	icon (:string) - Defaults to "arrow". Must be one of "arrow", "plus", or "none".
	join (:boolean) - Defaults to true.
	class (:any) - Defaults to nil.

Slots
	item (required) - Accepts attributes:	title (:string) (required)
	open (:boolean)
	class (:any)

 collapse(assigns)

 @spec collapse(map()) :: Phoenix.LiveView.Rendered.t()

Renders a single collapsible section (standalone collapse).
Attributes
	:title - Section title (required).
	:open - Whether initially open. Defaults to false.
	:icon - Icon style: arrow, plus, none. Defaults to "arrow".
	:class - Additional CSS classes.

Examples
<.collapse title="Click to expand">
 Hidden content revealed on click.
</.collapse>
Attributes
	title (:string) (required)
	open (:boolean) - Defaults to false.
	icon (:string) - Defaults to "arrow". Must be one of "arrow", "plus", or "none".
	class (:any) - Defaults to nil.

Slots
	inner_block (required)

MithrilUI.Components.Alert

Alert component for displaying important messages to users.
Supports semantic variants for different message types and optional
dismiss functionality with LiveView.JS animations.
Examples
Basic alert:
<.alert variant="info">This is an informational message.</.alert>
Dismissible alert:
<.alert variant="warning" dismissible id="my-alert">
 This can be closed by the user.
</.alert>
Alert with title and icon:
<.alert variant="success" title="Success!">
 Your changes have been saved.
</.alert>
DaisyUI Classes
	alert - Base alert styling
	alert-info - Informational style (blue)
	alert-success - Success style (green)
	alert-warning - Warning style (yellow)
	alert-error - Error style (red)

 Summary

 Functions

 alert(assigns)

 Renders an alert message with optional title and dismiss button.

 hide_alert(id)

 Hides an alert with animation.

 show_alert(id)

 Shows an alert with animation.

 Functions

 alert(assigns)

 @spec alert(map()) :: Phoenix.LiveView.Rendered.t()

Renders an alert message with optional title and dismiss button.
Attributes
	:id - DOM id (required if dismissible).
	:variant - The alert type: info, success, warning, error.
	:title - Optional title displayed prominently.
	:dismissible - Whether to show a dismiss button. Defaults to false.
	:icon - Whether to show a default icon for the variant. Defaults to true.
	:class - Additional CSS classes.

Slots
	:inner_block - The alert message content (required).
	:actions - Optional action buttons/links.

Examples
<.alert variant="error" title="Error" dismissible id="error-alert">
 Something went wrong. Please try again.
 <:actions>
 <button class="btn btn-sm">Retry</button>
 </:actions>
</.alert>
Attributes
	id (:string) - Defaults to nil.
	variant (:string) - Defaults to "info". Must be one of "info", "success", "warning", or "error".
	title (:string) - Defaults to nil.
	dismissible (:boolean) - Defaults to false.
	icon (:boolean) - Defaults to true.
	class (:any) - Defaults to nil.

Slots
	inner_block (required)
	actions

 hide_alert(id)

 @spec hide_alert(String.t()) :: Phoenix.LiveView.JS.t()

Hides an alert with animation.

 show_alert(id)

 @spec show_alert(String.t()) :: Phoenix.LiveView.JS.t()

Shows an alert with animation.

MithrilUI.Components.Avatar

Avatar component for displaying user profile images or placeholders.
Examples
Basic avatar:
<.avatar src="/user.jpg" alt="John Doe" />
With placeholder:
<.avatar placeholder="JD" />
Avatar group:
<.avatar_group>
 <.avatar src="/user1.jpg" />
 <.avatar src="/user2.jpg" />
 <.avatar placeholder="+5" />
</.avatar_group>
DaisyUI Classes
	avatar - Base avatar styling
	avatar-group - Group multiple avatars
	placeholder - Placeholder styling
	online / offline - Status indicators

 Summary

 Functions

 avatar(assigns)

 Renders an avatar.

 avatar_group(assigns)

 Renders a group of overlapping avatars.

 Functions

 avatar(assigns)

 @spec avatar(map()) :: Phoenix.LiveView.Rendered.t()

Renders an avatar.
Attributes
	:src - Image source URL.
	:alt - Alt text for image.
	:placeholder - Text to show when no image (initials).
	:size - Avatar size: xs, sm, md, lg, xl. Defaults to "md".
	:shape - Shape: circle, square, rounded. Defaults to "circle".
	:status - Online status: online, offline, nil. Defaults to nil.
	:ring - Show ring around avatar. Defaults to false.
	:ring_color - Ring color variant. Defaults to "primary".
	:class - Additional CSS classes.

Examples
<.avatar src="/avatar.jpg" size="lg" status="online" />

<.avatar placeholder="AB" size="sm" ring />
Attributes
	src (:string) - Defaults to nil.
	alt (:string) - Defaults to "".
	placeholder (:string) - Defaults to nil.
	size (:string) - Defaults to "md". Must be one of "xs", "sm", "md", "lg", or "xl".
	shape (:string) - Defaults to "circle". Must be one of "circle", "square", or "rounded".
	status (:string) - Defaults to nil.Must be one of nil, "online", or "offline".
	ring (:boolean) - Defaults to false.
	ring_color (:string) - Defaults to "primary".
	class (:any) - Defaults to nil.

 avatar_group(assigns)

 @spec avatar_group(map()) :: Phoenix.LiveView.Rendered.t()

Renders a group of overlapping avatars.
Attributes
	:class - Additional CSS classes.

Slots
	:inner_block - Avatar components to group.

Examples
<.avatar_group>
 <.avatar src="/user1.jpg" />
 <.avatar src="/user2.jpg" />
 <.avatar src="/user3.jpg" />
 <.avatar placeholder="+99" />
</.avatar_group>
Attributes
	class (:any) - Defaults to nil.

Slots
	inner_block (required)

MithrilUI.Components.Badge

Badge component for displaying status indicators, labels, and counts.
Examples
Basic badge:
<.badge>New</.badge>
With variant:
<.badge variant="success">Active</.badge>
Outline style:
<.badge variant="error" outline>Urgent</.badge>
DaisyUI Classes
	badge - Base badge styling
	badge-{variant} - Color variants
	badge-outline - Outline style
	badge-{size} - Size variants

 Summary

 Functions

 badge(assigns)

 Renders a badge.

 badge_with_icon(assigns)

 Renders a badge with an optional icon.

 indicator_badge(assigns)

 Renders a numeric indicator badge, typically for notification counts.

 Functions

 badge(assigns)

 @spec badge(map()) :: Phoenix.LiveView.Rendered.t()

Renders a badge.
Attributes
	:variant - Color variant.
	:size - Badge size: xs, sm, md, lg. Defaults to "md".
	:outline - Use outline style. Defaults to false.
	:class - Additional CSS classes.

Slots
	:inner_block - Badge content (required).

Examples
<.badge variant="primary">Featured</.badge>

<.badge variant="warning" size="lg">Important</.badge>
Attributes
	variant (:string) - Defaults to nil.Must be one of "primary", "secondary", "accent", "neutral", "ghost", "info", "success", "warning", "error", or nil.
	size (:string) - Defaults to "md". Must be one of "xs", "sm", "md", or "lg".
	outline (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.

Slots
	inner_block (required)

 badge_with_icon(assigns)

 @spec badge_with_icon(map()) :: Phoenix.LiveView.Rendered.t()

Renders a badge with an optional icon.
Attributes
Same as badge/1 plus:
	:icon_position - Icon position: left, right. Defaults to "left".

Slots
	:icon - Icon content.
	:inner_block - Badge text.

Examples
<.badge_with_icon variant="info">
 <:icon><svg>...</svg></:icon>
 Info
</.badge_with_icon>
Attributes
	variant (:string) - Defaults to nil.Must be one of "primary", "secondary", "accent", "neutral", "ghost", "info", "success", "warning", "error", or nil.
	size (:string) - Defaults to "md". Must be one of "xs", "sm", "md", or "lg".
	outline (:boolean) - Defaults to false.
	icon_position (:string) - Defaults to "left". Must be one of "left", or "right".
	class (:any) - Defaults to nil.

Slots
	icon
	inner_block (required)

 indicator_badge(assigns)

 @spec indicator_badge(map()) :: Phoenix.LiveView.Rendered.t()

Renders a numeric indicator badge, typically for notification counts.
Attributes
	:count - The number to display.
	:max - Maximum number before showing "max+". Defaults to 99.
	:show_zero - Show badge when count is 0. Defaults to false.

Examples
<.indicator_badge count={5} />

<.indicator_badge count={150} max={99} />
Attributes
	count (:integer) (required)
	max (:integer) - Defaults to 99.
	show_zero (:boolean) - Defaults to false.
	variant (:string) - Defaults to "primary". Must be one of "primary", "secondary", "accent", "neutral", "ghost", "info", "success", "warning", or "error".
	size (:string) - Defaults to "sm". Must be one of "xs", "sm", "md", or "lg".
	class (:any) - Defaults to nil.

MithrilUI.Components.Banner

Banner component for announcements, promotions, and notifications.
Examples
Basic banner:
<.banner>
 Important announcement here!
</.banner>
Dismissible banner:
<.banner id="promo-banner" dismissible>
 Special offer: 20% off today!
</.banner>
CTA banner:
<.banner_cta href="/signup">
 <:title>Join our newsletter</:title>
 <:description>Get weekly updates and exclusive content.</:description>
 <:button>Subscribe</:button>
</.banner_cta>

 Summary

 Functions

 banner(assigns)

 Renders a simple announcement banner.

 banner_cta(assigns)

 Renders a CTA (call-to-action) banner with title, description, and button.

 banner_info(assigns)

 Renders an informational banner with icon, heading, and actions.

 banner_newsletter(assigns)

 Renders a newsletter signup banner.

 Functions

 banner(assigns)

 @spec banner(map()) :: Phoenix.LiveView.Rendered.t()

Renders a simple announcement banner.
Attributes
	:id - Banner ID (required for dismissible banners).
	:position - Position: top, bottom. Defaults to "top".
	:variant - Style variant: default, info, success, warning, error.
	:fixed - Fix to viewport. Defaults to false.
	:dismissible - Show close button. Defaults to false.
	:class - Additional CSS classes.

Slots
	:icon - Optional leading icon.
	:inner_block - Banner content (required).

Examples
<.banner>New feature available!</.banner>

<.banner id="notice" variant="info" dismissible>
 <:icon><svg>...</svg></:icon>
 Check out our updated documentation.
</.banner>
Attributes
	id (:string) - Defaults to nil.
	position (:string) - Defaults to "top". Must be one of "top", or "bottom".
	variant (:string) - Defaults to "default". Must be one of "default", "info", "success", "warning", or "error".
	fixed (:boolean) - Defaults to false.
	dismissible (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	icon
	inner_block (required)

 banner_cta(assigns)

 @spec banner_cta(map()) :: Phoenix.LiveView.Rendered.t()

Renders a CTA (call-to-action) banner with title, description, and button.
Attributes
	:id - Banner ID.
	:href - Link URL for the CTA button.
	:position - Position when fixed: top, bottom.
	:fixed - Fix to viewport. Defaults to false.
	:dismissible - Show close button. Defaults to false.
	:class - Additional CSS classes.

Slots
	:title - Banner title.
	:description - Banner description.
	:button - CTA button text.

Examples
<.banner_cta href="/signup">
 <:title>Free trial available</:title>
 <:description>Try all features for 14 days.</:description>
 <:button>Start free trial</:button>
</.banner_cta>
Attributes
	id (:string) - Defaults to nil.
	href (:string) - Defaults to nil.
	position (:string) - Defaults to "top". Must be one of "top", or "bottom".
	fixed (:boolean) - Defaults to false.
	dismissible (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	title
	description
	button

 banner_info(assigns)

 @spec banner_info(map()) :: Phoenix.LiveView.Rendered.t()

Renders an informational banner with icon, heading, and actions.
Attributes
	:id - Banner ID.
	:variant - Style variant.
	:position - Position when fixed.
	:fixed - Fix to viewport. Defaults to false.
	:dismissible - Show close button. Defaults to false.
	:class - Additional CSS classes.

Slots
	:icon - Leading icon.
	:title - Banner heading.
	:description - Banner text.
	:actions - Action buttons.

Examples
<.banner_info id="update-notice" variant="info" dismissible>
 <:icon><svg>...</svg></:icon>
 <:title>System Update</:title>
 <:description>Scheduled maintenance on Sunday.</:description>
 <:actions>
 Learn more
 </:actions>
</.banner_info>
Attributes
	id (:string) - Defaults to nil.
	variant (:string) - Defaults to "info". Must be one of "default", "info", "success", "warning", or "error".
	position (:string) - Defaults to "top". Must be one of "top", or "bottom".
	fixed (:boolean) - Defaults to false.
	dismissible (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	icon
	title
	description
	actions

 banner_newsletter(assigns)

 @spec banner_newsletter(map()) :: Phoenix.LiveView.Rendered.t()

Renders a newsletter signup banner.
Attributes
	:id - Banner ID.
	:action - Form action URL.
	:position - Position when fixed.
	:fixed - Fix to viewport. Defaults to false.
	:dismissible - Show close button. Defaults to false.
	:placeholder - Input placeholder text.
	:button_text - Submit button text.
	:class - Additional CSS classes.

Slots
	:title - Banner title.

Examples
<.banner_newsletter action="/subscribe">
 <:title>Subscribe to our newsletter</:title>
</.banner_newsletter>
Attributes
	id (:string) - Defaults to nil.
	action (:string) - Defaults to nil.
	position (:string) - Defaults to "top". Must be one of "top", or "bottom".
	fixed (:boolean) - Defaults to false.
	dismissible (:boolean) - Defaults to false.
	placeholder (:string) - Defaults to "Enter your email".
	button_text (:string) - Defaults to "Subscribe".
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	title

MithrilUI.Components.Blockquote

Blockquote component for quoted text and testimonials.
Provides styled quotations with support for citations, avatars,
and various visual styles.
Examples
Basic blockquote:
<.blockquote>
 The only way to do great work is to love what you do.
</.blockquote>
With citation:
<.blockquote cite="Steve Jobs">
 The only way to do great work is to love what you do.
</.blockquote>
Testimonial style:
<.testimonial
 author="Jane Doe"
 title="CEO, Acme Corp"
 avatar="/images/jane.jpg"
>
 This product changed our business completely.
</.testimonial>

 Summary

 Functions

 blockquote(assigns)

 Renders a styled blockquote.

 testimonial(assigns)

 Renders a testimonial-style blockquote with author info.

 Functions

 blockquote(assigns)

 @spec blockquote(map()) :: Phoenix.LiveView.Rendered.t()

Renders a styled blockquote.
Attributes
	:variant - Visual style. Options: :default, :bordered, :solid.
	:size - Text size. Options: :sm, :md, :lg, :xl.
	:cite - Citation/author name.
	:cite_url - URL for citation source.
	:icon - Show quotation icon. Defaults to false.
	:align - Text alignment. Options: :left, :center, :right.
	:class - Additional CSS classes.

Slots
	:inner_block - Required. Quote content.

Examples
<.blockquote>Simple quote</.blockquote>
<.blockquote variant={:bordered} cite="Author Name">Bordered quote</.blockquote>
<.blockquote variant={:solid} icon size={:lg}>Large quote with icon</.blockquote>
Attributes
	variant (:atom) - Visual style. Defaults to :default. Must be one of :default, :bordered, or :solid.
	size (:atom) - Text size. Defaults to :md. Must be one of :sm, :md, :lg, or :xl.
	cite (:string) - Citation/author name. Defaults to nil.
	cite_url (:string) - URL for citation. Defaults to nil.
	icon (:boolean) - Show quotation icon. Defaults to false.
	align (:atom) - Text alignment. Defaults to :left. Must be one of :left, :center, or :right.
	class (:any) - Additional CSS classes. Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block (required) - Quote content.

 testimonial(assigns)

 @spec testimonial(map()) :: Phoenix.LiveView.Rendered.t()

Renders a testimonial-style blockquote with author info.
Attributes
	:author - Required. Author name.
	:title - Author title/role.
	:avatar - Avatar image URL.
	:rating - Star rating (1-5).
	:class - Additional CSS classes.

Examples
<.testimonial author="John Smith" title="Developer">
 Amazing library, saved us hours of work!
</.testimonial>

<.testimonial
 author="Jane Doe"
 title="CTO"
 avatar="/images/jane.jpg"
 rating={5}
>
 Best component library I've used.
</.testimonial>
Attributes
	author (:string) (required) - Author name.
	title (:string) - Author title/role. Defaults to nil.
	avatar (:string) - Avatar image URL. Defaults to nil.
	rating (:integer) - Star rating. Defaults to nil. Must be one of nil, 1, 2, 3, 4, or 5.
	class (:any) - Additional CSS classes. Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block (required) - Testimonial content.

MithrilUI.Components.BottomNavigation

A bottom navigation bar component for mobile-first navigation.
Bottom navigation bars provide quick access to top-level views and are
typically fixed at the bottom of the screen on mobile devices.
Examples
Basic bottom navigation:
<.bottom_nav>
 <:item label="Home" active>
 <svg>...</svg>
 </:item>
 <:item label="Search">
 <svg>...</svg>
 </:item>
 <:item label="Profile">
 <svg>...</svg>
 </:item>
</.bottom_nav>
With event handlers:
<.bottom_nav on_select="nav_changed">
 <:item label="Home" value="home" active>
 <.icon name="home" />
 </:item>
 <:item label="Messages" value="messages" badge="3">
 <.icon name="mail" />
 </:item>
</.bottom_nav>
DaisyUI Classes
The component uses the following DaisyUI classes:
	dock - Base container (bottom navigation)
	dock-label - Label text
	dock-active - Active item state
	dock-xs, dock-sm, dock-md, dock-lg, dock-xl - Size variants

 Summary

 Functions

 app_bar(assigns)

 Renders a bottom navigation styled as an application bar with a center action button.

 bottom_nav(assigns)

 Renders a bottom navigation bar.

 icon_bottom_nav(assigns)

 Renders a simple bottom navigation with icons only (no labels).

 Functions

 app_bar(assigns)

 @spec app_bar(map()) :: Phoenix.LiveView.Rendered.t()

Renders a bottom navigation styled as an application bar with a center action button.
Attributes
	:class - Additional CSS classes.
	:on_select - Event name triggered when an item is selected.
	:on_action - Event name triggered when center action is clicked.

Slots
	:item - Navigation items (typically 4, split around center action).
	:action - Center action button content.

Examples
<.app_bar on_select="nav" on_action="create">
 <:item value="home" label="Home" active>
 <svg>...</svg>
 </:item>
 <:item value="search" label="Search">
 <svg>...</svg>
 </:item>
 <:action>
 <svg class="h-6 w-6">...</svg>
 </:action>
 <:item value="notifications" label="Alerts">
 <svg>...</svg>
 </:item>
 <:item value="profile" label="Profile">
 <svg>...</svg>
 </:item>
</.app_bar>
Attributes
	class (:any) - Defaults to nil.
	on_select (:string) - Defaults to nil.
	on_action (:string) - Defaults to nil.
	Global attributes are accepted.

Slots
	item - Accepts attributes:	label (:string)
	value (:any)
	active (:boolean)

	action

 bottom_nav(assigns)

 @spec bottom_nav(map()) :: Phoenix.LiveView.Rendered.t()

Renders a bottom navigation bar.
Attributes
	:class - Additional CSS classes for the container.
	:size - Size variant: xs, sm, md, lg, xl. Defaults to nil (default size).
	:fixed - Whether the nav is fixed to bottom. Defaults to true.
	:on_select - Event name triggered when an item is selected.

Slots
	:item - Navigation items.	:label - Text label for the item.
	:value - Value sent with on_select event.
	:active - Whether this item is active.
	:disabled - Whether this item is disabled.
	:navigate - LiveView navigation path.
	:href - Standard link href.
	:badge - Badge text to display.

Examples
<.bottom_nav size="sm">
 <:item label="Home" active navigate="/">
 <svg class="h-5 w-5">...</svg>
 </:item>
 <:item label="Search" navigate="/search">
 <svg class="h-5 w-5">...</svg>
 </:item>
 <:item label="Settings" navigate="/settings">
 <svg class="h-5 w-5">...</svg>
 </:item>
</.bottom_nav>
Attributes
	class (:any) - Defaults to nil.
	size (:string) - Defaults to nil.Must be one of "xs", "sm", "md", "lg", "xl", or nil.
	fixed (:boolean) - Defaults to true.
	on_select (:string) - Defaults to nil.
	Global attributes are accepted.

Slots
	item (required) - Accepts attributes:	label (:string)
	value (:any)
	active (:boolean)
	disabled (:boolean)
	navigate (:string)
	href (:string)
	badge (:string)

 icon_bottom_nav(assigns)

 @spec icon_bottom_nav(map()) :: Phoenix.LiveView.Rendered.t()

Renders a simple bottom navigation with icons only (no labels).
Attributes
	:class - Additional CSS classes.
	:size - Size variant: xs, sm, md, lg, xl.
	:fixed - Whether the nav is fixed to bottom. Defaults to true.
	:on_select - Event name triggered when an item is selected.

Slots
	:item - Navigation items containing icon content.	:value - Value sent with on_select event.
	:active - Whether this item is active.
	:aria_label - Accessible label for the item.

Examples
<.icon_bottom_nav on_select="nav_changed">
 <:item value="home" active aria_label="Home">
 <svg class="h-6 w-6">...</svg>
 </:item>
 <:item value="search" aria_label="Search">
 <svg class="h-6 w-6">...</svg>
 </:item>
</.icon_bottom_nav>
Attributes
	class (:any) - Defaults to nil.
	size (:string) - Defaults to nil.Must be one of "xs", "sm", "md", "lg", "xl", or nil.
	fixed (:boolean) - Defaults to true.
	on_select (:string) - Defaults to nil.
	Global attributes are accepted.

Slots
	item (required) - Accepts attributes:	value (:any)
	active (:boolean)
	aria_label (:string)

MithrilUI.Components.Breadcrumb

A breadcrumb navigation component for showing hierarchical page structure.
Breadcrumbs help users understand their location within a site's hierarchy
and navigate back to parent pages.
Examples
Basic breadcrumb:
<.breadcrumb>
 <:item href="/">Home</:item>
 <:item href="/products">Products</:item>
 <:item>Current Page</:item>
</.breadcrumb>
With icons:
<.breadcrumb>
 <:item href="/" icon="home">Home</:item>
 <:item href="/docs" icon="document">Documentation</:item>
 <:item>Getting Started</:item>
</.breadcrumb>
DaisyUI Classes
The component uses the following DaisyUI classes:
	breadcrumbs - Base container with built-in separators

 Summary

 Functions

 breadcrumb(assigns)

 Renders a breadcrumb navigation trail.

 breadcrumb_from_segments(assigns)

 Renders a breadcrumb from a list of path segments.

 Functions

 breadcrumb(assigns)

 @spec breadcrumb(map()) :: Phoenix.LiveView.Rendered.t()

Renders a breadcrumb navigation trail.
Attributes
	:class - Additional CSS classes for the container.
	:size - Text size: sm, base, lg. Defaults to "sm".
	:max_width - Max width class for overflow scrolling. Defaults to nil.

Slots
	:item - Breadcrumb items.	:navigate - LiveView navigation path.
	:patch - LiveView patch path.
	:href - Standard link href.
	:icon - Icon content to display before text.

Examples
<.breadcrumb>
 <:item navigate="/">Home</:item>
 <:item navigate="/users">Users</:item>
 <:item>Profile</:item>
</.breadcrumb>
Attributes
	class (:any) - Defaults to nil.
	size (:string) - Defaults to "sm". Must be one of "xs", "sm", "base", or "lg".
	max_width (:string) - Defaults to nil.
	Global attributes are accepted.

Slots
	item (required) - Accepts attributes:	navigate (:string)
	patch (:string)
	href (:string)
	icon (:string)

 breadcrumb_from_segments(assigns)

 @spec breadcrumb_from_segments(map()) :: Phoenix.LiveView.Rendered.t()

Renders a breadcrumb from a list of path segments.
Automatically generates href paths based on segment accumulation.
Attributes
	:segments - List of path segment names (required).
	:base_path - Base path to prepend. Defaults to "/".
	:home - Whether to include home link. Defaults to true.
	:home_label - Label for home link. Defaults to "Home".
	:class - Additional CSS classes.

Examples
<.breadcrumb_from_segments segments={["products", "electronics", "phones"]} />

<%!-- Generates: Home > Products > Electronics > Phones --%>
Attributes
	segments (:list) (required)
	base_path (:string) - Defaults to "/".
	home (:boolean) - Defaults to true.
	home_label (:string) - Defaults to "Home".
	class (:any) - Defaults to nil.

MithrilUI.Components.Button

A versatile button component with multiple variants, sizes, and states.
Supports all DaisyUI button styles and integrates seamlessly with Phoenix LiveView
for handling click events and form submissions.
Examples
Basic button:
<.button>Click me</.button>
Primary button with icon:
<.button variant="primary">
 <.icon name="hero-plus" class="w-4 h-4 mr-2" />
 Add Item
</.button>
Loading state:
<.button loading>Processing...</.button>
Link-style button:
<.button variant="link" navigate="/dashboard">Go to Dashboard</.button>
DaisyUI Classes
The component uses the following DaisyUI classes:
	btn - Base button styling
	btn-{variant} - primary, secondary, accent, ghost, link, outline, neutral, info, success, warning, error
	btn-{size} - xs, sm, md, lg
	btn-disabled - Applied when disabled
	btn-block - Full width button
	btn-circle - Circular button
	btn-square - Square button

Accessibility
	Buttons are properly focusable with keyboard navigation
	Disabled state is conveyed via aria-disabled
	Loading state is conveyed via aria-busy

 Summary

 Functions

 button(assigns)

 Renders a styled button with configurable variant, size, and state.

 icon_button(assigns)

 Renders an icon-only button.

 link_button(assigns)

 Renders a button that looks like a link or navigates using LiveView.

 Functions

 button(assigns)

 @spec button(map()) :: Phoenix.LiveView.Rendered.t()

Renders a styled button with configurable variant, size, and state.
Attributes
	:type - The button type. Defaults to "button".
Supported types: button, submit, reset.
	:variant - The visual style variant.
Supported variants: primary, secondary, accent, ghost, link, outline, neutral, info, success, warning, error.
	:size - The button size.
Supported sizes: xs, sm, md, lg.
	:disabled - Whether the button is disabled. Defaults to false.
	:loading - Whether to show loading spinner. Defaults to false.
	:block - Whether button should be full width. Defaults to false.
	:circle - Whether button should be circular. Defaults to false.
	:square - Whether button should be square. Defaults to false.
	:outline - Whether to use outline style (can combine with variant). Defaults to false.
	:class - Additional CSS classes for the button element.
	Global attributes like phx-click, navigate, patch, href, etc. are passed through.

Slots
	:inner_block - The button content (required).

Examples
<.button type="submit" variant="primary">Submit Form</.button>

<.button variant="ghost" size="sm" phx-click="toggle">
 Toggle
</.button>

<.button loading disabled>
 Saving...
</.button>
Attributes
	type (:string) - Defaults to "button". Must be one of "button", "submit", or "reset".
	variant (:string) - Defaults to nil.Must be one of "primary", "secondary", "accent", "ghost", "link", "outline", "neutral", "info", "success", "warning", "error", or nil.
	size (:string) - Defaults to nil.Must be one of "xs", "sm", "md", "lg", or nil.
	disabled (:boolean) - Defaults to false.
	loading (:boolean) - Defaults to false.
	block (:boolean) - Defaults to false.
	circle (:boolean) - Defaults to false.
	square (:boolean) - Defaults to false.
	outline (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.
	Global attributes are accepted. Supports all globals plus: ["navigate", "patch", "href", "download", "hreflang", "referrerpolicy", "rel", "target", "type", "form", "name", "value", "phx-click", "phx-target", "phx-disable-with", "phx-page-loading"].

Slots
	inner_block (required)

 icon_button(assigns)

 @spec icon_button(map()) :: Phoenix.LiveView.Rendered.t()

Renders an icon-only button.
Automatically applies appropriate sizing and shape for icon buttons.
Attributes
	:label - Accessible label for screen readers (required for accessibility).

Examples
<.icon_button label="Delete item" variant="error" phx-click="delete">
 <.icon name="hero-trash" class="w-5 h-5" />
</.icon_button>

<.icon_button label="Add" circle variant="primary">
 <.icon name="hero-plus" class="w-6 h-6" />
</.icon_button>
Attributes
	label (:string) (required) - Accessible label for the button.
	type (:string) - Defaults to "button". Must be one of "button", "submit", or "reset".
	variant (:string) - Defaults to nil.Must be one of "primary", "secondary", "accent", "ghost", "link", "outline", "neutral", "info", "success", "warning", "error", or nil.
	size (:string) - Defaults to nil.Must be one of "xs", "sm", "md", "lg", or nil.
	disabled (:boolean) - Defaults to false.
	loading (:boolean) - Defaults to false.
	circle (:boolean) - Defaults to false.
	square (:boolean) - Defaults to true.
	outline (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.
	Global attributes are accepted. Supports all globals plus: ["navigate", "patch", "href", "download", "hreflang", "referrerpolicy", "rel", "target", "type", "form", "name", "value", "phx-click", "phx-target", "phx-disable-with", "phx-page-loading"].

Slots
	inner_block (required)

 link_button(assigns)

 @spec link_button(map()) :: Phoenix.LiveView.Rendered.t()

Renders a button that looks like a link or navigates using LiveView.
This is useful when you want button styling but link behavior.
Attributes
Same as button/1 plus navigation attributes.
Examples
<.link_button navigate="/users">View Users</.link_button>

<.link_button href="https://example.com" target="_blank">
 External Link
</.link_button>
Attributes
	variant (:string) - Defaults to nil.Must be one of "primary", "secondary", "accent", "ghost", "link", "outline", "neutral", "info", "success", "warning", "error", or nil.
	size (:string) - Defaults to nil.Must be one of "xs", "sm", "md", "lg", or nil.
	disabled (:boolean) - Defaults to false.
	loading (:boolean) - Defaults to false.
	block (:boolean) - Defaults to false.
	circle (:boolean) - Defaults to false.
	square (:boolean) - Defaults to false.
	outline (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.
	Global attributes are accepted. Supports all globals plus: ["navigate", "patch", "href", "download", "hreflang", "referrerpolicy", "rel", "target"].

Slots
	inner_block (required)

MithrilUI.Components.ButtonGroup

A component for grouping multiple buttons together with joined styling.
Button groups are useful for related actions, toolbars, or segmented controls
where multiple buttons should visually appear as a single unit.
Examples
Basic button group:
<.button_group>
 <:button>Left</:button>
 <:button>Center</:button>
 <:button>Right</:button>
</.button_group>
With variants:
<.button_group variant="primary">
 <:button>Save</:button>
 <:button>Save as Draft</:button>
</.button_group>
Vertical orientation:
<.button_group orientation="vertical">
 <:button>Option 1</:button>
 <:button>Option 2</:button>
 <:button>Option 3</:button>
</.button_group>
DaisyUI Classes
The component uses the following DaisyUI classes:
	join - Base container for joined elements
	join-item - Applied to each button in the group
	join-vertical - Vertical orientation
	join-horizontal - Horizontal orientation (default)

 Summary

 Functions

 button_group(assigns)

 Renders a group of joined buttons.

 radio_button_group(assigns)

 Renders a radio button group styled as joined buttons.

 Functions

 button_group(assigns)

 @spec button_group(map()) :: Phoenix.LiveView.Rendered.t()

Renders a group of joined buttons.
Attributes
	:variant - The visual style variant applied to all buttons.
	:size - The size applied to all buttons.
	:orientation - horizontal or vertical. Defaults to "horizontal".
	:outline - Whether to use outline style for all buttons. Defaults to false.
	:disabled - Whether all buttons are disabled. Defaults to false.
	:class - Additional CSS classes for the container.

Slots
	:button - Each button in the group (at least one required).	:active - Whether this button is in active state.
	:disabled - Whether this specific button is disabled.
	:class - Additional classes for this specific button.
	Supports phx-click and other event attributes.

Examples
<.button_group variant="primary" size="sm">
 <:button phx-click="align-left">Left</:button>
 <:button phx-click="align-center" active>Center</:button>
 <:button phx-click="align-right">Right</:button>
</.button_group>
Attributes
	variant (:string) - Defaults to nil.Must be one of "primary", "secondary", "accent", "ghost", "link", "outline", "neutral", "info", "success", "warning", "error", or nil.
	size (:string) - Defaults to nil.Must be one of "xs", "sm", "md", "lg", or nil.
	orientation (:string) - Defaults to "horizontal". Must be one of "horizontal", or "vertical".
	outline (:boolean) - Defaults to false.
	disabled (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.

Slots
	button (required) - Accepts attributes:	active (:boolean)
	disabled (:boolean)
	class (:any)
	type (:string)
	phx-click (:any)
	phx-target (:any)
	phx-value-item (:any)
	phx-value-id (:any)
	value (:any)
	name (:string)

 radio_button_group(assigns)

 @spec radio_button_group(map()) :: Phoenix.LiveView.Rendered.t()

Renders a radio button group styled as joined buttons.
Useful for single-selection scenarios where buttons should act like radio inputs.
Attributes
	:name - The form name for the radio inputs (required).
	:value - The currently selected value.
	:options - List of options as [{"Label", "value"}, ...] or keyword list.
	:variant - The visual style variant.
	:size - The size applied to all buttons.
	:orientation - horizontal or vertical. Defaults to "horizontal".
	:disabled - Whether all options are disabled.

Examples
<.radio_button_group
 name="alignment"
 value={@alignment}
 options={[{"Left", "left"}, {"Center", "center"}, {"Right", "right"}]}
 variant="primary"
/>
Attributes
	name (:string) (required)
	value (:any) - Defaults to nil.
	options (:list) (required)
	variant (:string) - Defaults to nil.Must be one of "primary", "secondary", "accent", "ghost", "link", "outline", "neutral", "info", "success", "warning", "error", or nil.
	size (:string) - Defaults to nil.Must be one of "xs", "sm", "md", "lg", or nil.
	orientation (:string) - Defaults to "horizontal". Must be one of "horizontal", or "vertical".
	outline (:boolean) - Defaults to false.
	disabled (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.
	Global attributes are accepted. Supports all globals plus: ["phx-change", "form"].

MithrilUI.Components.Card

Card component for displaying content in a contained, styled box.
Cards are versatile containers for grouping related content and actions.
Examples
Basic card:
<.card>
 <:body>Card content here</:body>
</.card>
Card with all slots:
<.card>
 <:figure>

 </:figure>
 <:body>
 <:title>Card Title</:title>
 <p>Card description and content.</p>
 <:actions>
 <button class="btn btn-primary">Action</button>
 </:actions>
 </:body>
</.card>
DaisyUI Classes
	card - Base card styling
	card-body - Content padding
	card-title - Title styling
	card-actions - Action button container
	card-bordered - Add border
	card-compact - Reduced padding
	image-full - Full-width image

 Summary

 Functions

 card(assigns)

 Renders a card container.

 simple_card(assigns)

 Renders a simple card without slots for quick usage.

 Functions

 card(assigns)

 @spec card(map()) :: Phoenix.LiveView.Rendered.t()

Renders a card container.
Attributes
	:bordered - Add border styling. Defaults to false.
	:compact - Use compact padding. Defaults to false.
	:image_full - Make image span full width with overlay. Defaults to false.
	:horizontal - Horizontal card layout. Defaults to false.
	:glass - Glass morphism effect. Defaults to false.
	:class - Additional CSS classes.

Slots
	:figure - Image or media content.
	:body - Main card content (required).
	:title - Card title (inside body).
	:actions - Action buttons (inside body).

Examples
<.card bordered>
 <:body>
 <:title>My Card</:title>
 <p>Some content here.</p>
 </:body>
</.card>
Attributes
	bordered (:boolean) - Defaults to false.
	compact (:boolean) - Defaults to false.
	image_full (:boolean) - Defaults to false.
	horizontal (:boolean) - Defaults to false.
	glass (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.

Slots
	figure
	body (required)
	title
	actions

 simple_card(assigns)

 @spec simple_card(map()) :: Phoenix.LiveView.Rendered.t()

Renders a simple card without slots for quick usage.
Attributes
	:title - Card title text.
	:description - Card description text.
	:image - Image URL for figure.
	:image_alt - Alt text for image.

Examples
<.simple_card
 title="Product Name"
 description="Product description here"
 image="/product.jpg"
/>
Attributes
	title (:string) - Defaults to nil.
	description (:string) - Defaults to nil.
	image (:string) - Defaults to nil.
	image_alt (:string) - Defaults to "".
	bordered (:boolean) - Defaults to false.
	compact (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.

Slots
	inner_block
	actions

MithrilUI.Components.Carousel

Carousel component for image sliders and content carousels.
Uses Phoenix.LiveView.JS for client-side slide transitions without requiring
server roundtrips. Supports navigation buttons, indicator dots, and various
transition styles.
Examples
Basic carousel with navigation:
<.carousel id="my-carousel" items={@images} />
With indicators and custom styling:
<.carousel
 id="hero-carousel"
 items={@slides}
 show_indicators
 show_controls
 class="rounded-xl overflow-hidden"
/>
Manual carousel with slots:
<.carousel_container id="custom-carousel">
 <.carousel_slide index={0} total={3}>

 </.carousel_slide>
 <.carousel_slide index={1} total={3}>

 </.carousel_slide>
 <.carousel_slide index={2} total={3}>

 </.carousel_slide>
 <.carousel_controls id="custom-carousel" total={3} />
 <.carousel_indicators id="custom-carousel" total={3} />
</.carousel_container>

 Summary

 Functions

 carousel(assigns)

 Renders a complete carousel with images.

 carousel_container(assigns)

 Renders a carousel container for custom content.

 carousel_controls(assigns)

 Renders carousel navigation controls (prev/next buttons).

 carousel_indicators(assigns)

 Renders carousel indicator dots.

 carousel_js()

 Returns the JavaScript code needed for carousel navigation.

 carousel_slide(assigns)

 Renders an individual carousel slide.

 Functions

 carousel(assigns)

Renders a complete carousel with images.
This is the easiest way to create a carousel - just pass a list of image URLs.
Attributes
	:id - Unique ID for the carousel (required).
	:items - List of image URLs (required).
	:show_controls - Show prev/next buttons. Defaults to true.
	:show_indicators - Show indicator dots. Defaults to true.
	:class - Additional CSS classes.

Examples
<.carousel id="gallery" items={["/img1.jpg", "/img2.jpg", "/img3.jpg"]} />

<.carousel id="hero" items={@images} show_indicators={false} />
Attributes
	id (:string) (required)
	items (:list) (required)
	show_controls (:boolean) - Defaults to true.
	show_indicators (:boolean) - Defaults to true.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 carousel_container(assigns)

Renders a carousel container for custom content.
Use this with carousel_slide, carousel_controls, and carousel_indicators
for full control over carousel content.
Attributes
	:id - Unique ID for the carousel (required).
	:class - Additional CSS classes.

Slots
	:inner_block - Carousel content (slides, controls, indicators).

Attributes
	id (:string) (required)
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block (required)

 carousel_controls(assigns)

Renders carousel navigation controls (prev/next buttons).
Attributes
	:id - Carousel container ID (required).
	:total - Total number of slides (required).
	:class - Additional CSS classes.

Attributes
	id (:string) (required)
	total (:integer) (required)
	class (:any) - Defaults to nil.

 carousel_indicators(assigns)

Renders carousel indicator dots.
Attributes
	:id - Carousel container ID (required).
	:total - Total number of slides (required).
	:class - Additional CSS classes.

Attributes
	id (:string) (required)
	total (:integer) (required)
	class (:any) - Defaults to nil.

 carousel_js()

Returns the JavaScript code needed for carousel navigation.
Add this to your app.js or include it in a script tag:
<script>{MithrilUI.Components.Carousel.carousel_js()}</script>
Or in app.js:
// Carousel navigation
document.addEventListener("carousel:next", (e) => { ... })

 carousel_slide(assigns)

Renders an individual carousel slide.
Attributes
	:index - Slide index (0-based, required).
	:total - Total number of slides (required for JS transitions).
	:class - Additional CSS classes.

Slots
	:inner_block - Slide content.

Attributes
	index (:integer) (required)
	total (:integer) (required)
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block (required)

MithrilUI.Components.ChatBubble

Chat bubble component for displaying conversation messages.
Examples
Basic chat:
<.chat position="start">
 <:bubble>Hello!</:bubble>
</.chat>
With avatar and metadata:
<.chat position="end">
 <:avatar src="/avatar.jpg" />
 <:header>John Doe <time>12:45</time></:header>
 <:bubble color="primary">Hi there!</:bubble>
 <:footer>Delivered</:footer>
</.chat>
DaisyUI Classes
	chat - Container class
	chat-start - Align to left (incoming message)
	chat-end - Align to right (outgoing message)
	chat-bubble - Message bubble styling
	chat-bubble-{color} - Bubble color variants
	chat-image - Avatar wrapper
	chat-header - Text above bubble
	chat-footer - Text below bubble

 Summary

 Functions

 chat(assigns)

 Renders a chat message container.

 chat_conversation(assigns)

 Renders a conversation container for grouping chat messages.

 chat_file(assigns)

 Renders a chat bubble with a file attachment.

 chat_image(assigns)

 Renders a chat bubble with an image attachment.

 chat_message(assigns)

 Renders a simple chat message with minimal configuration.

 Functions

 chat(assigns)

 @spec chat(map()) :: Phoenix.LiveView.Rendered.t()

Renders a chat message container.
Attributes
	:position - Message alignment: start, end (required).
	:class - Additional CSS classes.

Slots
	:avatar - Avatar image with optional src attribute.
	:header - Header content (name, timestamp).
	:bubble - Message bubble content with optional color attribute.
	:footer - Footer content (status, read receipt).

Examples
<.chat position="start">
 <:bubble>Hello, how are you?</:bubble>
</.chat>

<.chat position="end">
 <:avatar src="/me.jpg" />
 <:header>Me <time class="text-xs opacity-50">12:46</time></:header>
 <:bubble color="primary">I'm doing great, thanks!</:bubble>
 <:footer class="opacity-50">Seen</:footer>
</.chat>
Attributes
	position (:string) (required) - Must be one of "start", or "end".
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	avatar - Accepts attributes:	src (:string)
	alt (:string)
	class (:any)

	header - Accepts attributes:	class (:any)

	bubble - Accepts attributes:	color (:string)
	class (:any)

	footer - Accepts attributes:	class (:any)

 chat_conversation(assigns)

 @spec chat_conversation(map()) :: Phoenix.LiveView.Rendered.t()

Renders a conversation container for grouping chat messages.
Attributes
	:class - Additional CSS classes.

Slots
	:inner_block - Chat messages (required).

Examples
<.chat_conversation>
 <.chat_message position="start" sender="Alice">Hello!</.chat_message>
 <.chat_message position="end" sender="Bob">Hi!</.chat_message>
</.chat_conversation>
Attributes
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block (required)

 chat_file(assigns)

 @spec chat_file(map()) :: Phoenix.LiveView.Rendered.t()

Renders a chat bubble with a file attachment.
Attributes
	:position - Message alignment.
	:file_name - File name to display (required).
	:file_size - File size text.
	:file_type - File type/format text.
	:download_url - Download link URL.
	:avatar_src - Avatar image URL.
	:sender - Sender name.
	:time - Message timestamp.
	:class - Additional CSS classes.

Examples
<.chat_file
 position="start"
 file_name="document.pdf"
 file_size="2.4 MB"
 file_type="PDF"
 download_url="/files/document.pdf"
 sender="Alice"
/>
Attributes
	position (:string) - Defaults to "start". Must be one of "start", or "end".
	file_name (:string) (required)
	file_size (:string) - Defaults to nil.
	file_type (:string) - Defaults to nil.
	download_url (:string) - Defaults to nil.
	avatar_src (:string) - Defaults to nil.
	sender (:string) - Defaults to nil.
	time (:string) - Defaults to nil.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 chat_image(assigns)

 @spec chat_image(map()) :: Phoenix.LiveView.Rendered.t()

Renders a chat bubble with an image attachment.
Attributes
	:position - Message alignment.
	:image_src - Image URL (required).
	:image_alt - Image alt text.
	:caption - Optional caption text.
	:avatar_src - Avatar image URL.
	:sender - Sender name.
	:time - Message timestamp.
	:class - Additional CSS classes.

Examples
<.chat_image
 position="start"
 image_src="/photo.jpg"
 sender="Alice"
 time="12:50"
 caption="Check this out!"
/>
Attributes
	position (:string) - Defaults to "start". Must be one of "start", or "end".
	image_src (:string) (required)
	image_alt (:string) - Defaults to "Shared image".
	caption (:string) - Defaults to nil.
	avatar_src (:string) - Defaults to nil.
	sender (:string) - Defaults to nil.
	time (:string) - Defaults to nil.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 chat_message(assigns)

 @spec chat_message(map()) :: Phoenix.LiveView.Rendered.t()

Renders a simple chat message with minimal configuration.
Attributes
	:position - Message alignment: start, end. Defaults to "start".
	:color - Bubble color.
	:avatar_src - Avatar image URL.
	:sender - Sender name.
	:time - Message timestamp.
	:status - Delivery status text.
	:class - Additional CSS classes.

Slots
	:inner_block - Message content (required).

Examples
<.chat_message position="start" sender="Alice" time="12:45">
 Hello!
</.chat_message>

<.chat_message
 position="end"
 color="primary"
 sender="Me"
 time="12:46"
 status="Delivered"
>
 Hi there!
</.chat_message>
Attributes
	position (:string) - Defaults to "start". Must be one of "start", or "end".
	color (:string) - Defaults to nil.Must be one of "primary", "secondary", "accent", "neutral", "info", "success", "warning", "error", or nil.
	avatar_src (:string) - Defaults to nil.
	sender (:string) - Defaults to nil.
	time (:string) - Defaults to nil.
	status (:string) - Defaults to nil.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block (required)

MithrilUI.Components.Checkbox

Checkbox component for boolean selection.
Examples
Basic usage:
<.checkbox name="terms" label="I agree to the terms" />
With form field:
<.checkbox field={@form[:subscribe]} label="Subscribe to newsletter" />
Checked by default:
<.checkbox name="active" label="Active" checked={true} />
Disabled:
<.checkbox name="locked" label="Locked option" disabled={true} />

 Summary

 Functions

 checkbox(assigns)

 Renders a checkbox input with label.

 Functions

 checkbox(assigns)

 @spec checkbox(map()) :: Phoenix.LiveView.Rendered.t()

Renders a checkbox input with label.
Attributes
	:id - Input element ID
	:name - Input name attribute
	:label - Label text (required)
	:value - Value when checked (default: "true")
	:checked - Whether checkbox is checked (default: false)
	:field - Phoenix form field struct
	:errors - List of error messages
	:disabled - Disable the input
	:class - Additional CSS classes for the checkbox
	Global attributes are passed through

Slots
None.
Attributes
	id (:any) - Defaults to nil.
	name (:any)
	label (:string) (required)
	value (:any) - Defaults to "true".
	checked (:boolean) - Defaults to false.
	field (Phoenix.HTML.FormField) - Form field struct.
	errors (:list) - Defaults to [].
	disabled (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

MithrilUI.Components.Clipboard

Clipboard component for copy-to-clipboard functionality.
Provides various patterns for copying text to the clipboard including
input fields with copy buttons, icon-only copy buttons, and copy buttons
with text labels.
Requires JavaScript to handle the actual copy functionality.
See the Flowbite clipboard documentation for JS implementation.

 Summary

 Functions

 clipboard_code(assigns)

 Renders a code block with a copy button.

 clipboard_icon_button(assigns)

 Renders a standalone copy icon button.

 clipboard_inline(assigns)

 Renders a copy button with icon inside an input field.

 clipboard_input(assigns)

 Renders an input field with a copy button.

 clipboard_input_group(assigns)

 Renders an input group with prefix label and copy button.

 Functions

 clipboard_code(assigns)

Renders a code block with a copy button.
Examples
<.clipboard_code id="install-code" code="mix deps.get" />
<.clipboard_code id="curl" code={@curl_command} language="bash" />
Attributes
	id (:string) (required)
	code (:string) (required)
	language (:string) - Defaults to nil.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 clipboard_icon_button(assigns)

Renders a standalone copy icon button.
Examples
<.clipboard_icon_button target_id="code-block" />
<.clipboard_icon_button target_id="secret" tooltip />
Attributes
	target_id (:string) (required) - ID of the element to copy from.
	tooltip (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 clipboard_inline(assigns)

Renders a copy button with icon inside an input field.
Examples
<.clipboard_inline id="inline-copy" value="https://example.com/share/abc123" />
Attributes
	id (:string) (required)
	value (:string) (required)
	label (:string) - Defaults to nil.
	readonly (:boolean) - Defaults to true.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 clipboard_input(assigns)

Renders an input field with a copy button.
Examples
<.clipboard_input id="copy-input" value="npm install mithril_ui" />
<.clipboard_input id="api-key" value={@api_key} label="API Key" readonly />
Attributes
	id (:string) (required)
	value (:string) (required)
	label (:string) - Defaults to nil.
	readonly (:boolean) - Defaults to true.
	button_text (:string) - Defaults to "Copy".
	success_text (:string) - Defaults to "Copied!".
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 clipboard_input_group(assigns)

Renders an input group with prefix label and copy button.
Examples
<.clipboard_input_group id="url" prefix="https://" value="mithrilui.dev/share/123" />
Attributes
	id (:string) (required)
	value (:string) (required)
	prefix (:string) (required)
	readonly (:boolean) - Defaults to true.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

MithrilUI.Components.Code

Code component for displaying inline code and code blocks.
Provides styled code snippets with optional syntax highlighting
support and copy functionality.
Examples
Inline code:
<.code>const x = 42</.code>
Code block:
<.code_block language="elixir">
 def hello(name) do
 "Hello, #{name}!"
 end
</.code_block>
With line numbers:
<.code_block language="javascript" line_numbers>
 function greet(name) {
 return `Hello, ${name}!`;
 }
</.code_block>

 Summary

 Functions

 code(assigns)

 Renders inline code.

 code_block(assigns)

 Renders a code block with optional features.

 code_diff(assigns)

 Renders a diff-style code block showing changes.

 Functions

 code(assigns)

 @spec code(map()) :: Phoenix.LiveView.Rendered.t()

Renders inline code.
Attributes
	:color - Background color. Options: :default, :primary, :secondary, :accent.
	:class - Additional CSS classes.

Slots
	:inner_block - Required. Code content.

Examples
<.code>npm install</.code>
<.code color={:primary}>mix deps.get</.code>
Attributes
	color (:atom) - Background color. Defaults to :default. Must be one of :default, :primary, :secondary, or :accent.
	class (:any) - Additional CSS classes. Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block (required) - Code content.

 code_block(assigns)

 @spec code_block(map()) :: Phoenix.LiveView.Rendered.t()

Renders a code block with optional features.
Attributes
	:language - Programming language for syntax highlighting.
	:filename - Optional filename to display.
	:line_numbers - Show line numbers. Defaults to false.
	:highlight_lines - List of line numbers to highlight.
	:copyable - Show copy button. Defaults to true.
	:class - Additional CSS classes.

Slots
	:inner_block - Required. Code content.

Examples
<.code_block language="elixir" filename="lib/my_app.ex">
 defmodule MyApp do
 def hello, do: :world
 end
</.code_block>
Attributes
	language (:string) - Programming language. Defaults to nil.
	filename (:string) - Filename to display. Defaults to nil.
	line_numbers (:boolean) - Show line numbers. Defaults to false.
	copyable (:boolean) - Show copy button. Defaults to true.
	class (:any) - Additional CSS classes. Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block (required) - Code content.

 code_diff(assigns)

 @spec code_diff(map()) :: Phoenix.LiveView.Rendered.t()

Renders a diff-style code block showing changes.
Attributes
	:language - Programming language.
	:class - Additional CSS classes.

Slots
	:inner_block - Required. Diff content (lines starting with + or -).

Examples
<.code_diff language="elixir">
 - def old_function do
 - :old
 - end
 + def new_function do
 + :new
 + end
</.code_diff>
Attributes
	language (:string) - Programming language. Defaults to nil.
	class (:any) - Additional CSS classes. Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block (required) - Diff content.

MithrilUI.Components.Drawer

Slide-out drawer component for side panels and navigation.
Drawers slide in from the edge of the screen and are typically used
for navigation menus, settings panels, or supplementary content.
Examples
Basic drawer:
<.drawer id="menu-drawer" side="left">
 <:trigger>
 <button class="btn">Open Menu</button>
 </:trigger>
 <nav>
 Home
 About
 </nav>
</.drawer>
Drawer with explicit open control:
<button phx-click={show_drawer("settings-drawer")}>Settings</button>
<.drawer id="settings-drawer" side="right">
 <h2>Settings</h2>
 <!-- settings content -->
</.drawer>
DaisyUI Classes
	drawer - Drawer container
	drawer-toggle - Hidden checkbox for state
	drawer-content - Main content area
	drawer-side - Drawer panel
	drawer-overlay - Background overlay

 Summary

 Functions

 animated_drawer(assigns)

 Renders an animated drawer using LiveView.JS for transitions.

 drawer(assigns)

 Renders a drawer panel.

 hide_drawer(id, side \\ :left)

 Hides a drawer with animation.

 show_drawer(id, side \\ :left)

 Shows a drawer with animation.

 Functions

 animated_drawer(assigns)

 @spec animated_drawer(map()) :: Phoenix.LiveView.Rendered.t()

Renders an animated drawer using LiveView.JS for transitions.
This variant provides smooth slide animations.
Attributes
Same as drawer/1.
Examples
<.animated_drawer id="menu" side="left">
 <nav>Menu content</nav>
</.animated_drawer>

<button phx-click={show_drawer("menu")}>Open Menu</button>
Attributes
	id (:string) (required)
	side (:string) - Defaults to "left". Must be one of "left", or "right".
	overlay (:boolean) - Defaults to true.
	class (:any) - Defaults to nil.

Slots
	inner_block (required)

 drawer(assigns)

 @spec drawer(map()) :: Phoenix.LiveView.Rendered.t()

Renders a drawer panel.
Attributes
	:id - Required. Unique identifier for the drawer.
	:side - Which side drawer slides from: left, right. Defaults to "left".
	:open - Whether drawer is initially open. Defaults to false.
	:overlay - Whether to show backdrop overlay. Defaults to true.
	:class - Additional CSS classes for drawer content.

Slots
	:trigger - Optional trigger element (placed in main content).
	:inner_block - Drawer panel content (required).

Examples
<.drawer id="nav-drawer" side="left">
 <:trigger>
 <button class="btn btn-ghost lg:hidden">
 <svg><!-- hamburger icon --></svg>
 </button>
 </:trigger>
 <ul class="menu">
 Home
 Dashboard

</.drawer>
Attributes
	id (:string) (required)
	side (:string) - Defaults to "left". Must be one of "left", or "right".
	open (:boolean) - Defaults to false.
	overlay (:boolean) - Defaults to true.
	class (:any) - Defaults to nil.

Slots
	trigger
	inner_block (required)

 hide_drawer(id, side \\ :left)

 @spec hide_drawer(String.t(), :left | :right) :: Phoenix.LiveView.JS.t()

Hides a drawer with animation.

 show_drawer(id, side \\ :left)

 @spec show_drawer(String.t(), :left | :right) :: Phoenix.LiveView.JS.t()

Shows a drawer with animation.

MithrilUI.Components.Dropdown

A dropdown menu component with LiveView.JS animations for smooth transitions.
Supports various positions, triggers, and content types for flexible menu implementations.
Examples
Basic dropdown:
<.dropdown>
 <:trigger>
 <button class="btn">Open Menu</button>
 </:trigger>
 <:item>Profile</:item>
 <:item>Settings</:item>
 <:item>Logout</:item>
</.dropdown>
With custom positioning:
<.dropdown position="end">
 <:trigger>
 <button class="btn btn-primary">Actions</button>
 </:trigger>
 <:item phx-click="edit">Edit</:item>
 <:item phx-click="delete" class="text-error">Delete</:item>
</.dropdown>
With dividers and custom content:
<.dropdown>
 <:trigger>Menu</:trigger>
 <:item>Item 1</:item>
 <:divider />
 <:item>Item 2</:item>
 <:content>
 <div class="p-4">Custom content here</div>
 </:content>
</.dropdown>
DaisyUI Classes
The component uses the following DaisyUI classes:
	dropdown - Base container
	dropdown-content - Menu container
	dropdown-end - Align to end
	dropdown-top - Open upward
	dropdown-bottom - Open downward (default)
	dropdown-left - Open to left
	dropdown-right - Open to right
	dropdown-hover - Open on hover
	dropdown-open - Force open state
	menu - Menu styling for items

Accessibility
	Uses proper ARIA attributes for menu patterns
	Supports keyboard navigation
	Focus management with LiveView.JS

 Summary

 Functions

 animated_dropdown(assigns)

 Renders an animated dropdown that uses LiveView.JS for show/hide transitions.

 dropdown(assigns)

 Renders a dropdown menu with trigger and menu items.

 hide_dropdown(id)

 Hides the dropdown menu.

 show_dropdown(id)

 Shows the dropdown menu.

 toggle_dropdown(id)

 Toggles the dropdown menu visibility.

 Functions

 animated_dropdown(assigns)

 @spec animated_dropdown(map()) :: Phoenix.LiveView.Rendered.t()

Renders an animated dropdown that uses LiveView.JS for show/hide transitions.
This variant provides smoother animations compared to CSS-only dropdowns.
Attributes
Same as dropdown/1 plus:
	:js_show - Custom JS command for showing. Defaults to fade animation.
	:js_hide - Custom JS command for hiding. Defaults to fade animation.

Examples
<.animated_dropdown id="actions-menu">
 <:trigger>
 <button class="btn">Actions</button>
 </:trigger>
 <:item phx-click="action1">Action 1</:item>
 <:item phx-click="action2">Action 2</:item>
</.animated_dropdown>
Attributes
	id (:string) (required)
	position (:string) - Defaults to nil.Must be one of "end", "top", "bottom", "left", "right", or nil.
	class (:any) - Defaults to nil.
	menu_class (:string) - Defaults to nil.

Slots
	trigger (required)
	item - Accepts attributes:	disabled (:boolean)
	class (:any)
	phx-click (:any)
	phx-target (:any)
	phx-value-item (:any)
	phx-value-id (:any)
	navigate (:string)
	patch (:string)
	href (:string)

	divider
	content

 dropdown(assigns)

 @spec dropdown(map()) :: Phoenix.LiveView.Rendered.t()

Renders a dropdown menu with trigger and menu items.
Attributes
	:id - Required. Unique identifier for the dropdown.
	:position - Menu position relative to trigger.
Supported: end, top, bottom, left, right.
	:hover - Whether to open on hover instead of click. Defaults to false.
	:open - Whether dropdown is forcibly open. Defaults to false.
	:class - Additional CSS classes for the container.
	:menu_class - Additional CSS classes for the menu.

Slots
	:trigger - The element that triggers the dropdown (required).
	:item - Menu items with optional click handlers.	:disabled - Whether item is disabled.
	:class - Additional classes for the item.

	:divider - Visual separator between items.
	:content - Custom content block (alternative to items).

Examples
<.dropdown id="user-menu" position="end">
 <:trigger>
 <button class="btn btn-ghost btn-circle avatar">

 </button>
 </:trigger>
 <:item navigate="/profile">Profile</:item>
 <:item navigate="/settings">Settings</:item>
 <:divider />
 <:item phx-click="logout">Logout</:item>
</.dropdown>
Attributes
	id (:string) (required)
	position (:string) - Defaults to nil.Must be one of "end", "top", "bottom", "left", "right", or nil.
	hover (:boolean) - Defaults to false.
	open (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.
	menu_class (:string) - Defaults to nil.

Slots
	trigger (required)
	item - Accepts attributes:	disabled (:boolean)
	class (:any)
	phx-click (:any)
	phx-target (:any)
	phx-value-item (:any)
	phx-value-id (:any)
	navigate (:string)
	patch (:string)
	href (:string)

	divider
	content

 hide_dropdown(id)

 @spec hide_dropdown(String.t()) :: Phoenix.LiveView.JS.t()

Hides the dropdown menu.
Examples
<button phx-click={MithrilUI.Components.Dropdown.hide_dropdown("my-dropdown")}>
 Close Menu
</button>

 show_dropdown(id)

 @spec show_dropdown(String.t()) :: Phoenix.LiveView.JS.t()

Shows the dropdown menu.
Examples
<button phx-click={MithrilUI.Components.Dropdown.show_dropdown("my-dropdown")}>
 Show Menu
</button>

 toggle_dropdown(id)

 @spec toggle_dropdown(String.t()) :: Phoenix.LiveView.JS.t()

Toggles the dropdown menu visibility.

MithrilUI.Components.FileInput

File input component for uploading files.
Examples
Basic usage:
<.file_input name="avatar" label="Profile Picture" />
With accept filter:
<.file_input name="document" accept=".pdf,.doc,.docx" />
Multiple files:
<.file_input name="photos" multiple />
With form field:
<.file_input field={@form[:avatar]} label="Avatar" />

 Summary

 Functions

 file_input(assigns)

 Renders a file input.

 Functions

 file_input(assigns)

 @spec file_input(map()) :: Phoenix.LiveView.Rendered.t()

Renders a file input.
Attributes
	:id - Input element ID
	:name - Input name attribute
	:label - Label text displayed above the input
	:field - Phoenix form field struct
	:errors - List of error messages
	:help_text - Helper text shown below input
	:accept - Accepted file types (e.g., ".jpg,.png" or "image/*")
	:multiple - Allow multiple file selection
	:disabled - Disable the input
	:required - Mark as required
	:class - Additional CSS classes
	Global attributes are passed through

Slots
None.
Attributes
	id (:any) - Defaults to nil.
	name (:any)
	label (:string) - Defaults to nil.
	field (Phoenix.HTML.FormField) - Form field struct.
	errors (:list) - Defaults to [].
	help_text (:string) - Defaults to nil.
	accept (:string) - Accepted file types. Defaults to nil.
	multiple (:boolean) - Allow multiple files. Defaults to false.
	disabled (:boolean) - Defaults to false.
	required (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

MithrilUI.Components.Footer

Footer component for page footers with navigation, branding, and social links.
Examples
Basic footer:
<.footer>
 <.footer_nav title="Services">
 Branding
 Design
 </.footer_nav>
 <.footer_nav title="Company">
 About
 Contact
 </.footer_nav>
</.footer>
DaisyUI Classes
	footer - Base footer styling
	footer-center - Centered content
	footer-horizontal - Horizontal columns (default is vertical)
	footer-title - Section headings

 Summary

 Functions

 footer(assigns)

 Renders a footer container.

 footer_aside(assigns)

 Renders a footer aside section for branding/logo.

 footer_nav(assigns)

 Renders a navigation section within a footer.

 footer_social(assigns)

 Renders a social links section.

 footer_two_row(assigns)

 Renders a two-row footer with navigation links and copyright.

 footer_with_social(assigns)

 Renders a complete footer with common social media icons.

 Functions

 footer(assigns)

 @spec footer(map()) :: Phoenix.LiveView.Rendered.t()

Renders a footer container.
Attributes
	:center - Center footer content. Defaults to false.
	:horizontal - Use horizontal layout. Defaults to false.
	:bg - Background color class. Defaults to "bg-base-200".
	:text - Text color class. Defaults to "text-base-content".
	:class - Additional CSS classes.

Slots
	:inner_block - Footer content (required).

Examples
<.footer>
 <nav>...</nav>
</.footer>

<.footer center bg="bg-neutral" text="text-neutral-content">
 <p>Copyright 2024</p>
</.footer>
Attributes
	center (:boolean) - Defaults to false.
	horizontal (:boolean) - Defaults to false.
	bg (:string) - Defaults to "bg-base-200".
	text (:string) - Defaults to "text-base-content".
	padding (:string) - Defaults to "p-10".
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block (required)

 footer_aside(assigns)

 @spec footer_aside(map()) :: Phoenix.LiveView.Rendered.t()

Renders a footer aside section for branding/logo.
Attributes
	:class - Additional CSS classes.

Slots
	:logo - Logo content.
	:inner_block - Additional content.

Examples
<.footer_aside>
 <:logo>
 <svg>...</svg>
 </:logo>
 <p>ACME Industries Ltd.
Providing reliable tech since 1992</p>
</.footer_aside>
Attributes
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	logo
	inner_block

 footer_nav(assigns)

 @spec footer_nav(map()) :: Phoenix.LiveView.Rendered.t()

Renders a navigation section within a footer.
Attributes
	:title - Section title.
	:class - Additional CSS classes.

Slots
	:inner_block - Navigation links (required).

Examples
<.footer_nav title="Services">
 Branding
 Design
 Marketing
</.footer_nav>
Attributes
	title (:string) - Defaults to nil.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block (required)

 footer_social(assigns)

 @spec footer_social(map()) :: Phoenix.LiveView.Rendered.t()

Renders a social links section.
Attributes
	:class - Additional CSS classes.

Slots
	:inner_block - Social link icons (required).

Examples
<.footer_social>
 <svg>Twitter</svg>
 <svg>YouTube</svg>
 <svg>Facebook</svg>
</.footer_social>
Attributes
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block (required)

 footer_two_row(assigns)

 @spec footer_two_row(map()) :: Phoenix.LiveView.Rendered.t()

Renders a two-row footer with navigation links and copyright.
Attributes
	:copyright - Copyright text.
	:class - Additional CSS classes.

Slots
	:nav - Navigation sections.

Examples
<.footer_two_row copyright="Copyright 2024 - All rights reserved">
 <:nav>
 <.footer_nav title="Services">
 Branding
 Design
 </.footer_nav>
 </:nav>
</.footer_two_row>
Attributes
	copyright (:string) - Defaults to nil.
	bg_top (:string) - Defaults to "bg-base-200".
	bg_bottom (:string) - Defaults to "bg-base-300".
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	nav

 footer_with_social(assigns)

 @spec footer_with_social(map()) :: Phoenix.LiveView.Rendered.t()

Renders a complete footer with common social media icons.
Attributes
	:twitter - Twitter/X profile URL.
	:youtube - YouTube channel URL.
	:facebook - Facebook page URL.
	:github - GitHub profile URL.
	:linkedin - LinkedIn profile URL.
	:instagram - Instagram profile URL.
	:class - Additional CSS classes.

Slots
	:inner_block - Additional footer content.

Examples
<.footer_with_social
 twitter="https://twitter.com/example"
 github="https://github.com/example"
>
 <p>Copyright 2024 Example Inc.</p>
</.footer_with_social>
Attributes
	twitter (:string) - Defaults to nil.
	youtube (:string) - Defaults to nil.
	facebook (:string) - Defaults to nil.
	github (:string) - Defaults to nil.
	linkedin (:string) - Defaults to nil.
	instagram (:string) - Defaults to nil.
	bg (:string) - Defaults to "bg-neutral".
	text (:string) - Defaults to "text-neutral-content".
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block

MithrilUI.Components.Gallery

Gallery component for displaying collections of images in various layouts.
Examples
Basic gallery:
<.gallery items={["/img1.jpg", "/img2.jpg", "/img3.jpg"]} />
Masonry layout:
<.gallery_masonry items={images} columns={4} />
Featured image gallery:
<.gallery_featured
 featured="/hero.jpg"
 items={["/a.jpg", "/b.jpg", "/c.jpg", "/d.jpg"]}
/>

 Summary

 Functions

 gallery(assigns)

 Renders a basic grid gallery.

 gallery_featured(assigns)

 Renders a gallery with a featured/hero image.

 gallery_filtered(assigns)

 Renders a gallery with filter tabs.

 gallery_item(assigns)

 Renders a gallery item with hover overlay.

 gallery_masonry(assigns)

 Renders a masonry-style gallery with stacked columns.

 gallery_quad(assigns)

 Renders a quad (2x2) gallery.

 Functions

 gallery(assigns)

 @spec gallery(map()) :: Phoenix.LiveView.Rendered.t()

Renders a basic grid gallery.
Attributes
	:items - List of image URLs (required).
	:columns - Number of columns: 2, 3, 4, 5. Defaults to "3".
	:gap - Gap size: 2, 4, 6. Defaults to "4".
	:rounded - Enable rounded corners. Defaults to true.
	:class - Additional CSS classes.

Examples
<.gallery items={["/a.jpg", "/b.jpg", "/c.jpg"]} />

<.gallery items={images} columns="4" gap="2" />
Attributes
	items (:list) (required)
	columns (:string) - Defaults to "3". Must be one of "2", "3", "4", or "5".
	gap (:string) - Defaults to "4". Must be one of "2", "4", or "6".
	rounded (:boolean) - Defaults to true.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 gallery_featured(assigns)

 @spec gallery_featured(map()) :: Phoenix.LiveView.Rendered.t()

Renders a gallery with a featured/hero image.
Attributes
	:featured - Featured image URL (required).
	:items - List of thumbnail image URLs (required).
	:gap - Gap size. Defaults to "4".
	:rounded - Enable rounded corners. Defaults to true.
	:class - Additional CSS classes.

Examples
<.gallery_featured
 featured="/hero.jpg"
 items={["/a.jpg", "/b.jpg", "/c.jpg", "/d.jpg", "/e.jpg"]}
/>
Attributes
	featured (:string) (required)
	items (:list) (required)
	gap (:string) - Defaults to "4". Must be one of "2", "4", or "6".
	rounded (:boolean) - Defaults to true.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 gallery_filtered(assigns)

 @spec gallery_filtered(map()) :: Phoenix.LiveView.Rendered.t()

Renders a gallery with filter tabs.
Attributes
	:items - List of maps with :src and :category keys (required).
	:categories - List of category names (required).
	:columns - Number of columns.
	:gap - Gap size.
	:rounded - Enable rounded corners.
	:class - Additional CSS classes.

Examples
<.gallery_filtered
 items={[
 %{src: "/a.jpg", category: "nature"},
 %{src: "/b.jpg", category: "city"},
 %{src: "/c.jpg", category: "nature"}
]}
 categories={["all", "nature", "city"]}
/>
Attributes
	items (:list) (required)
	categories (:list) (required)
	columns (:string) - Defaults to "3". Must be one of "2", "3", "4", or "5".
	gap (:string) - Defaults to "4". Must be one of "2", "4", or "6".
	rounded (:boolean) - Defaults to true.
	active_category (:string) - Defaults to "all".
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 gallery_item(assigns)

 @spec gallery_item(map()) :: Phoenix.LiveView.Rendered.t()

Renders a gallery item with hover overlay.
Attributes
	:src - Image URL (required).
	:alt - Alt text.
	:rounded - Enable rounded corners. Defaults to true.
	:class - Additional CSS classes.

Slots
	:overlay - Hover overlay content.

Examples
<.gallery_item src="/photo.jpg">
 <:overlay>
 <button class="btn btn-sm">View</button>
 </:overlay>
</.gallery_item>
Attributes
	src (:string) (required)
	alt (:string) - Defaults to "".
	rounded (:boolean) - Defaults to true.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	overlay

 gallery_masonry(assigns)

 @spec gallery_masonry(map()) :: Phoenix.LiveView.Rendered.t()

Renders a masonry-style gallery with stacked columns.
Attributes
	:items - List of image URLs (required).
	:columns - Number of columns: 2, 3, 4. Defaults to "4".
	:gap - Gap size. Defaults to "4".
	:rounded - Enable rounded corners. Defaults to true.
	:class - Additional CSS classes.

Examples
<.gallery_masonry items={images} columns="3" />
Attributes
	items (:list) (required)
	columns (:string) - Defaults to "4". Must be one of "2", "3", or "4".
	gap (:string) - Defaults to "4". Must be one of "2", "4", or "6".
	rounded (:boolean) - Defaults to true.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 gallery_quad(assigns)

 @spec gallery_quad(map()) :: Phoenix.LiveView.Rendered.t()

Renders a quad (2x2) gallery.
Attributes
	:items - List of exactly 4 image URLs (required).
	:gap - Gap size. Defaults to "2".
	:rounded - Enable rounded corners. Defaults to true.
	:class - Additional CSS classes.

Examples
<.gallery_quad items={["/a.jpg", "/b.jpg", "/c.jpg", "/d.jpg"]} />
Attributes
	items (:list) (required)
	gap (:string) - Defaults to "2". Must be one of "2", "4", or "6".
	rounded (:boolean) - Defaults to true.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

MithrilUI.Components.Heading

Heading component for semantic page titles and section headers.
Provides consistent heading styles from H1 to H6 with support for
colors, sizes, and decorations.
Examples
Basic headings:
<.heading level={1}>Page Title</.heading>
<.heading level={2}>Section Title</.heading>
<.heading level={3}>Subsection</.heading>
With custom styles:
<.heading level={1} size={:xl} color={:primary}>
 Highlighted Title
</.heading>
Accessibility
	Use heading levels in logical order (H1 -> H2 -> H3, etc.)
	Only one H1 per page
	Headings should describe the content that follows

 Summary

 Functions

 heading(assigns)

 Renders a semantic heading element (h1-h6).

 Functions

 heading(assigns)

 @spec heading(map()) :: Phoenix.LiveView.Rendered.t()

Renders a semantic heading element (h1-h6).
Attributes
	:level - Heading level (1-6). Defaults to 1.
	:size - Override default size. Options: :xs, :sm, :md, :lg, :xl, :2xl, :3xl, :4xl, :5xl.
	:color - Text color. Options: :default, :primary, :secondary, :accent, :muted.
	:weight - Font weight. Options: :normal, :medium, :semibold, :bold, :extrabold.
	:tracking - Letter spacing. Options: :tighter, :tight, :normal, :wide.
	:class - Additional CSS classes.

Slots
	:inner_block - Required. Heading content.

Examples
<.heading level={1}>Welcome to Our App</.heading>
<.heading level={2} color={:primary}>Features</.heading>
<.heading level={3} weight={:medium} size={:lg}>Subsection</.heading>
Attributes
	level (:integer) - Heading level (1-6). Defaults to 1. Must be one of 1, 2, 3, 4, 5, or 6.
	size (:atom) - Override default size. Defaults to nil. Must be one of nil, :xs, :sm, :md, :lg, :xl, :"2xl", :"3xl", :"4xl", or :"5xl".
	color (:atom) - Text color. Defaults to :default. Must be one of :default, :primary, :secondary, :accent, or :muted.
	weight (:atom) - Font weight. Defaults to :bold. Must be one of :normal, :medium, :semibold, :bold, or :extrabold.
	tracking (:atom) - Letter spacing. Defaults to :tight. Must be one of :tighter, :tight, :normal, or :wide.
	class (:any) - Additional CSS classes. Defaults to nil.
	Global attributes are accepted. Additional HTML attributes.

Slots
	inner_block (required) - Heading content.

MithrilUI.Components.Indicator

Indicator component for displaying status dots, badges, and notifications.
Examples
Basic indicator:
<.indicator>
 <:badge class="badge badge-primary">New</:badge>
 <button class="btn">Messages</button>
</.indicator>
Status dot:
<.indicator>
 <:badge class="badge badge-xs badge-success" />
 <.avatar src="/avatar.jpg" />
</.indicator>
DaisyUI Classes
	indicator - Container class
	indicator-item - The positioned badge/dot
	indicator-start - Align to start (left)
	indicator-center - Center alignment
	indicator-end - Align to end (right) [default]
	indicator-top - Position at top [default]
	indicator-middle - Center vertically
	indicator-bottom - Position at bottom

 Summary

 Functions

 avatar_status(assigns)

 Renders a status indicator on an avatar.

 count_indicator(assigns)

 Renders a count badge indicator, typically for notifications.

 indicator(assigns)

 Renders an indicator container with positioned badge.

 legend_indicator(assigns)

 Renders a legend indicator with text label.

 status_dot(assigns)

 Renders a simple status indicator dot.

 Functions

 avatar_status(assigns)

 @spec avatar_status(map()) :: Phoenix.LiveView.Rendered.t()

Renders a status indicator on an avatar.
Attributes
	:status - Status type: online, offline, away, busy. Defaults to "online".
	:position - Position: top-right, bottom-right, bottom-left. Defaults to "bottom-right".
	:class - Additional CSS classes.

Slots
	:inner_block - Avatar content (required).

Examples
<.avatar_status status="online">
 <div class="avatar">
 <div class="w-12 rounded-full">

 </div>
 </div>
</.avatar_status>
Attributes
	status (:string) - Defaults to "online". Must be one of "online", "offline", "away", or "busy".
	position (:string) - Defaults to "bottom-right". Must be one of "top-right", "bottom-right", or "bottom-left".
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block (required)

 count_indicator(assigns)

 @spec count_indicator(map()) :: Phoenix.LiveView.Rendered.t()

Renders a count badge indicator, typically for notifications.
Attributes
	:count - Number to display (required).
	:max - Maximum before showing "max+". Defaults to 99.
	:color - Badge color. Defaults to "primary".
	:show_zero - Show when count is 0. Defaults to false.
	:horizontal - Horizontal position.
	:vertical - Vertical position.
	:class - Additional CSS classes.

Slots
	:inner_block - The main content (required).

Examples
<.count_indicator count={5}>
 <button class="btn">Messages</button>
</.count_indicator>

<.count_indicator count={150} max={99}>
 <button class="btn">Notifications</button>
</.count_indicator>
Attributes
	count (:integer) (required)
	max (:integer) - Defaults to 99.
	color (:string) - Defaults to "primary". Must be one of "primary", "secondary", "accent", "neutral", "info", "success", "warning", or "error".
	show_zero (:boolean) - Defaults to false.
	horizontal (:string) - Defaults to "end". Must be one of "start", "center", or "end".
	vertical (:string) - Defaults to "top". Must be one of "top", "middle", or "bottom".
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block (required)

 indicator(assigns)

 @spec indicator(map()) :: Phoenix.LiveView.Rendered.t()

Renders an indicator container with positioned badge.
Attributes
	:horizontal - Horizontal position: start, center, end. Defaults to "end".
	:vertical - Vertical position: top, middle, bottom. Defaults to "top".
	:class - Additional CSS classes.

Slots
	:badge - The indicator badge content.
	:inner_block - The main content (required).

Examples
<.indicator>
 <:badge class="badge badge-secondary">99+</:badge>
 <button class="btn">Inbox</button>
</.indicator>

<.indicator horizontal="start" vertical="bottom">
 <:badge class="badge badge-xs badge-success" />
 <div class="bg-base-300 p-4">Content</div>
</.indicator>
Attributes
	horizontal (:string) - Defaults to "end". Must be one of "start", "center", or "end".
	vertical (:string) - Defaults to "top". Must be one of "top", "middle", or "bottom".
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	badge
	inner_block (required)

 legend_indicator(assigns)

 @spec legend_indicator(map()) :: Phoenix.LiveView.Rendered.t()

Renders a legend indicator with text label.
Attributes
	:color - Indicator color.
	:label - Text label (required).
	:class - Additional CSS classes.

Examples
<.legend_indicator color="success" label="Online" />

<.legend_indicator color="warning" label="Away" />
Attributes
	color (:string) - Defaults to "primary". Must be one of "primary", "secondary", "accent", "neutral", "info", "success", "warning", or "error".
	label (:string) (required)
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 status_dot(assigns)

 @spec status_dot(map()) :: Phoenix.LiveView.Rendered.t()

Renders a simple status indicator dot.
Attributes
	:color - Dot color.
	:size - Dot size: xs, sm, md. Defaults to "sm".
	:pulse - Add pulse animation. Defaults to false.
	:class - Additional CSS classes.

Examples
<.status_dot color="success" />

<.status_dot color="error" pulse />
Attributes
	color (:string) - Defaults to "primary". Must be one of "primary", "secondary", "accent", "neutral", "info", "success", "warning", or "error".
	size (:string) - Defaults to "sm". Must be one of "xs", "sm", or "md".
	pulse (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

MithrilUI.Components.Input

A versatile input component for forms with full Phoenix.HTML.FormField integration.
Supports all common HTML5 input types and integrates seamlessly with Phoenix forms,
automatically extracting field values and displaying validation errors.
Examples
Basic text input:
<.input name="username" placeholder="Enter your username" />
With form field integration:
<.input field={@form[:email]} type="email" label="Email Address" />
Password input with help text:
<.input
 field={@form[:password]}
 type="password"
 label="Password"
 help_text="Must be at least 8 characters"
/>
Disabled input:
<.input name="readonly_field" value="Cannot edit" disabled />
DaisyUI Classes
The component uses the following DaisyUI classes:
	input - Base input styling
	input-bordered - Adds border styling
	input-error - Applied when there are validation errors
	input-disabled - Applied when disabled

Accessibility
	Labels are properly associated with inputs via for attribute
	Error messages are linked via aria-describedby
	Invalid state is indicated via aria-invalid
	Required fields are marked with aria-required

 Summary

 Functions

 input(assigns)

 Renders a styled input field with optional label, help text, and error display.

 Functions

 input(assigns)

 @spec input(map()) :: Phoenix.LiveView.Rendered.t()

Renders a styled input field with optional label, help text, and error display.
Attributes
	:id - The DOM id for the input element. Defaults to the field id when using form fields.
	:name - The input name attribute. Required unless using field.
	:label - Optional label text displayed above the input.
	:value - The input value.
	:type - The input type. Defaults to "text".
Supported types: text, email, password, number, tel, url, search, date, time, datetime-local, hidden.
	:field - A Phoenix.HTML.FormField struct for form integration.
	:errors - List of error tuples or strings to display.
	:help_text - Optional help text displayed below the input.
	:required - Whether the field is required. Defaults to false.
	:disabled - Whether the input is disabled. Defaults to false.
	:readonly - Whether the input is read-only. Defaults to false.
	:placeholder - Placeholder text for the input.
	:class - Additional CSS classes for the input element.
	Global attributes like autocomplete, autofocus, min, max, etc. are passed through.

Examples
<.input type="email" name="user_email" label="Email" required />

<.input field={@form[:name]} label="Full Name" placeholder="John Doe" />
Attributes
	id (:any) - Defaults to nil.
	name (:any)
	label (:string) - Defaults to nil.
	value (:any) - Defaults to nil.
	type (:string) - The type of input to render. Defaults to "text". Must be one of "text", "email", "password", "number", "tel", "url", "search", "date", "time", "datetime-local", or "hidden".
	field (Phoenix.HTML.FormField) - A form field struct from Phoenix.HTML.Form. Defaults to nil.
	errors (:list) - List of error messages to display. Defaults to [].
	help_text (:string) - Help text displayed below the input. Defaults to nil.
	required (:boolean) - Whether the field is required. Defaults to false.
	disabled (:boolean) - Whether the input is disabled. Defaults to false.
	readonly (:boolean) - Whether the input is read-only. Defaults to false.
	placeholder (:string) - Placeholder text. Defaults to nil.
	class (:any) - Additional CSS classes for the input. Defaults to nil.
	Global attributes are accepted. Supports all globals plus: ["autocomplete", "autofocus", "min", "max", "minlength", "maxlength", "pattern", "step", "inputmode", "list", "form"].

MithrilUI.Components.Kbd

Keyboard component for displaying keyboard keys and shortcuts.
Used in documentation and help content to show keyboard shortcuts
and key combinations.
Examples
Single key:
<.kbd>Esc</.kbd>
Key combination:
<.kbd_combo keys={["Ctrl", "S"]} />
With description:
<.kbd_shortcut keys={["Cmd", "K"]} description="Open command palette" />

 Summary

 Functions

 kbd(assigns)

 Renders a single keyboard key.

 kbd_arrow(assigns)

 Renders a special arrow key.

 kbd_combo(assigns)

 Renders a keyboard shortcut combination.

 kbd_shortcut(assigns)

 Renders a keyboard shortcut with description.

 kbd_table(assigns)

 Renders a table of keyboard shortcuts.

 Functions

 kbd(assigns)

 @spec kbd(map()) :: Phoenix.LiveView.Rendered.t()

Renders a single keyboard key.
Attributes
	:size - Key size. Options: :xs, :sm, :md, :lg.
	:variant - Visual style. Options: :default, :outline.
	:class - Additional CSS classes.

Slots
	:inner_block - Required. Key text.

Examples
<.kbd>Enter</.kbd>
<.kbd size={:lg}>Spacebar</.kbd>
<.kbd variant={:outline}>Tab</.kbd>
Attributes
	size (:atom) - Key size. Defaults to :md. Must be one of :xs, :sm, :md, or :lg.
	variant (:atom) - Visual style. Defaults to :default. Must be one of :default, or :outline.
	class (:any) - Additional CSS classes. Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block (required) - Key text.

 kbd_arrow(assigns)

 @spec kbd_arrow(map()) :: Phoenix.LiveView.Rendered.t()

Renders a special arrow key.
Attributes
	:direction - Arrow direction. Options: :up, :down, :left, :right.
	:size - Key size.
	:class - Additional CSS classes.

Examples
<.kbd_arrow direction={:up} />
<.kbd_arrow direction={:right} size={:lg} />
Attributes
	direction (:atom) (required) - Arrow direction. Must be one of :up, :down, :left, or :right.
	size (:atom) - Key size. Defaults to :md. Must be one of :xs, :sm, :md, or :lg.
	class (:any) - Additional CSS classes. Defaults to nil.
	Global attributes are accepted.

 kbd_combo(assigns)

 @spec kbd_combo(map()) :: Phoenix.LiveView.Rendered.t()

Renders a keyboard shortcut combination.
Attributes
	:keys - Required. List of keys in the combination.
	:separator - Separator between keys. Defaults to "+".
	:size - Key size. Options: :xs, :sm, :md, :lg.
	:class - Additional CSS classes.

Examples
<.kbd_combo keys={["Ctrl", "C"]} />
<.kbd_combo keys={["Cmd", "Shift", "P"]} />
<.kbd_combo keys={["Alt", "Tab"]} separator=" + " />
Attributes
	keys (:list) (required) - List of keys.
	separator (:string) - Separator between keys. Defaults to "+".
	size (:atom) - Key size. Defaults to :md. Must be one of :xs, :sm, :md, or :lg.
	class (:any) - Additional CSS classes. Defaults to nil.
	Global attributes are accepted.

 kbd_shortcut(assigns)

 @spec kbd_shortcut(map()) :: Phoenix.LiveView.Rendered.t()

Renders a keyboard shortcut with description.
Attributes
	:keys - Required. List of keys in the combination.
	:description - Required. Description of what the shortcut does.
	:size - Key size.
	:class - Additional CSS classes.

Examples
<.kbd_shortcut keys={["Ctrl", "S"]} description="Save file" />
<.kbd_shortcut keys={["Cmd", "Z"]} description="Undo" />
Attributes
	keys (:list) (required) - List of keys.
	description (:string) (required) - Shortcut description.
	size (:atom) - Key size. Defaults to :sm. Must be one of :xs, :sm, :md, or :lg.
	class (:any) - Additional CSS classes. Defaults to nil.
	Global attributes are accepted.

 kbd_table(assigns)

 @spec kbd_table(map()) :: Phoenix.LiveView.Rendered.t()

Renders a table of keyboard shortcuts.
Attributes
	:shortcuts - Required. List of maps with :keys and :description.
	:title - Optional title for the shortcuts table.
	:class - Additional CSS classes.

Examples
<.kbd_table
 title="Editor Shortcuts"
 shortcuts={[
 %{keys: ["Ctrl", "S"], description: "Save"},
 %{keys: ["Ctrl", "Z"], description: "Undo"},
 %{keys: ["Ctrl", "Y"], description: "Redo"}
]}
/>
Attributes
	shortcuts (:list) (required) - List of shortcut maps.
	title (:string) - Table title. Defaults to nil.
	class (:any) - Additional CSS classes. Defaults to nil.
	Global attributes are accepted.

MithrilUI.Components.Link

Link component for styled anchor elements.
Provides consistent link styles with support for colors, underline
behaviors, and various visual variants.
Examples
Basic link:
<.link href="/about">About Us</.link>
With colors:
<.link href="/docs" color={:primary}>Documentation</.link>
Without underline by default:
<.link href="/page" underline={:hover}>Hover to underline</.link>
Note
This component wraps the standard Phoenix link for styling purposes.
For navigation, consider using Phoenix.Component.link/1 directly.

 Summary

 Functions

 button_link(assigns)

 Renders a button-styled link.

 nav_link(assigns)

 Renders a navigation link with active state support.

 styled_link(assigns)

 Renders a styled anchor link.

 Functions

 button_link(assigns)

 @spec button_link(map()) :: Phoenix.LiveView.Rendered.t()

Renders a button-styled link.
Attributes
	:href - Link destination URL.
	:variant - Button variant. Options: :primary, :secondary, :accent, :ghost, :outline.
	:size - Button size. Options: :xs, :sm, :md, :lg.
	:class - Additional CSS classes.

Examples
<.button_link href="/signup" variant={:primary}>Sign Up</.button_link>
<.button_link href="/learn" variant={:ghost}>Learn More</.button_link>
Attributes
	href (:string) (required) - Link destination.
	variant (:atom) - Button variant. Defaults to :primary. Must be one of :primary, :secondary, :accent, :ghost, or :outline.
	size (:atom) - Button size. Defaults to :md. Must be one of :xs, :sm, :md, or :lg.
	external (:boolean) - Open in new tab. Defaults to false.
	class (:any) - Additional CSS classes. Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block (required) - Link content.

 nav_link(assigns)

 @spec nav_link(map()) :: Phoenix.LiveView.Rendered.t()

Renders a navigation link with active state support.
Attributes
	:href - Link destination URL.
	:active - Whether link represents current page.
	:class - Additional CSS classes.

Examples
<.nav_link href="/" active={@current_path == "/"}>Home</.nav_link>
<.nav_link href="/about" active={@current_path == "/about"}>About</.nav_link>
Attributes
	href (:string) (required) - Link destination.
	active (:boolean) - Active state. Defaults to false.
	class (:any) - Additional CSS classes. Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block (required) - Link content.

 styled_link(assigns)

 @spec styled_link(map()) :: Phoenix.LiveView.Rendered.t()

Renders a styled anchor link.
Attributes
	:href - Link destination URL (required).
	:color - Link color. Options: :default, :primary, :secondary, :accent, :muted, :neutral.
	:underline - Underline behavior. Options: :always, :hover, :none.
	:weight - Font weight. Options: :normal, :medium, :semibold, :bold.
	:external - Open in new tab. Defaults to false.
	:class - Additional CSS classes.

Slots
	:inner_block - Required. Link text/content.

Examples
<.styled_link href="/">Home</.styled_link>
<.styled_link href="/about" color={:primary} underline={:hover}>About</.styled_link>
<.styled_link href="https://example.com" external>External Site</.styled_link>
Attributes
	href (:string) (required) - Link destination URL.
	color (:atom) - Link color. Defaults to :primary. Must be one of :default, :primary, :secondary, :accent, :muted, or :neutral.
	underline (:atom) - Underline behavior. Defaults to :hover. Must be one of :always, :hover, or :none.
	weight (:atom) - Font weight. Defaults to :medium. Must be one of :normal, :medium, :semibold, or :bold.
	external (:boolean) - Open in new tab. Defaults to false.
	class (:any) - Additional CSS classes. Defaults to nil.
	Global attributes are accepted. Supports all globals plus: ["download", "hreflang", "ping", "referrerpolicy", "rel", "type"].

Slots
	inner_block (required) - Link content.

MithrilUI.Components.ListGroup

List group component for displaying lists of related items.
Examples
Basic list:
<.list_group>
 <:item>Item 1</:item>
 <:item>Item 2</:item>
 <:item>Item 3</:item>
</.list_group>
With links:
<.list_group>
 <:item href="/profile">Profile</:item>
 <:item href="/settings">Settings</:item>
</.list_group>
DaisyUI Classes
	menu - Base menu/list styling
	menu-horizontal - Horizontal layout
	menu-vertical - Vertical layout (default)

 Summary

 Functions

 list_group(assigns)

 Renders a list group.

 simple_list(assigns)

 Renders a simple list with items from a list.

 Functions

 list_group(assigns)

 @spec list_group(map()) :: Phoenix.LiveView.Rendered.t()

Renders a list group.
Attributes
	:bordered - Add border around list. Defaults to true.
	:rounded - Add rounded corners. Defaults to true.
	:horizontal - Horizontal layout. Defaults to false.
	:compact - Compact item spacing. Defaults to false.
	:class - Additional CSS classes.

Slots
	:item - List items.	:active - Whether item is active.
	:disabled - Whether item is disabled.
	:href - Link URL.
	:navigate - LiveView navigate path.
	:class - Additional item classes.

Examples
<.list_group bordered>
 <:item active>Selected Item</:item>
 <:item>Regular Item</:item>
 <:item disabled>Disabled Item</:item>
</.list_group>
Attributes
	bordered (:boolean) - Defaults to true.
	rounded (:boolean) - Defaults to true.
	horizontal (:boolean) - Defaults to false.
	compact (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.

Slots
	item - Accepts attributes:	active (:boolean)
	disabled (:boolean)
	href (:string)
	navigate (:string)
	class (:any)

	title

 simple_list(assigns)

 @spec simple_list(map()) :: Phoenix.LiveView.Rendered.t()

Renders a simple list with items from a list.
Attributes
	:items - List of items to display.
	:item_class - Class applied to each item.

Examples
<.simple_list items={["Apple", "Banana", "Cherry"]} />
Attributes
	items (:list) (required)
	bordered (:boolean) - Defaults to true.
	rounded (:boolean) - Defaults to true.
	item_class (:string) - Defaults to nil.
	class (:any) - Defaults to nil.

MithrilUI.Components.Modal

Modal dialog component with backdrop and LiveView.JS animations.
Modals are used for focused interactions that require user attention
or input before continuing.
Examples
Basic modal:
<.modal id="confirm-modal">
 <:title>Confirm Action</:title>
 Are you sure you want to proceed?
 <:actions>
 <button class="btn" phx-click={hide_modal("confirm-modal")}>Cancel</button>
 <button class="btn btn-primary" phx-click="confirm">Confirm</button>
 </:actions>
</.modal>
Open modal with button:
<button phx-click={show_modal("my-modal")}>Open Modal</button>
DaisyUI Classes
	modal - Modal container
	modal-box - Modal content box
	modal-backdrop - Background overlay
	modal-open - Forces modal open

 Summary

 Functions

 hide_modal(id)

 Hides a modal with animations.

 modal(assigns)

 Renders a modal dialog.

 show_modal(id)

 Shows a modal with animations.

 Functions

 hide_modal(id)

 @spec hide_modal(String.t()) :: Phoenix.LiveView.JS.t()

Hides a modal with animations.
Examples
<button phx-click={MithrilUI.Components.Modal.hide_modal("my-modal")}>
 Close
</button>

 modal(assigns)

 @spec modal(map()) :: Phoenix.LiveView.Rendered.t()

Renders a modal dialog.
Attributes
	:id - Required. Unique identifier for the modal.
	:show - Whether modal is initially visible. Defaults to false.
	:on_cancel - JS command to run when modal is cancelled.
	:class - Additional CSS classes for modal box.

Slots
	:title - Modal title/header.
	:inner_block - Modal body content (required).
	:actions - Footer action buttons.

Examples
<.modal id="edit-modal" on_cancel={JS.navigate("/")}>
 <:title>Edit Profile</:title>
 <form phx-submit="save">
 <!-- form fields -->
 </form>
 <:actions>
 <button class="btn btn-primary" type="submit">Save</button>
 </:actions>
</.modal>
Attributes
	id (:string) (required)
	show (:boolean) - Defaults to false.
	on_cancel (Phoenix.LiveView.JS) - Defaults to %Phoenix.LiveView.JS{ops: []}.
	class (:any) - Defaults to nil.

Slots
	title
	inner_block (required)
	actions

 show_modal(id)

 @spec show_modal(String.t()) :: Phoenix.LiveView.JS.t()

Shows a modal with animations.
Examples
<button phx-click={MithrilUI.Components.Modal.show_modal("my-modal")}>
 Open
</button>

MithrilUI.Components.Navbar

A responsive navigation bar component with flexible sections.
The navbar provides a top navigation area with three sections: start (left),
center, and end (right). Each section fills available space and can contain
any content including buttons, menus, dropdowns, and search inputs.
Examples
Basic navbar with brand and links:
<.navbar>
 <:start_section>
 Brand
 </:start_section>
 <:center_section>
 <ul class="menu menu-horizontal px-1">
 <a>Home
 <a>About

 </:center_section>
 <:end_section>
 <button class="btn btn-primary">Login</button>
 </:end_section>
</.navbar>
With dropdown menu:
<.navbar>
 <:start_section>
 <.navbar_dropdown>
 <:trigger>
 <button class="btn btn-ghost lg:hidden">Menu</button>
 </:trigger>
 <:content>
 <a>Home
 <a>About
 </:content>
 </.navbar_dropdown>
 Brand
 </:start_section>
</.navbar>
DaisyUI Classes
The component uses the following DaisyUI classes:
	navbar - Base container
	navbar-start - Left section (50% width)
	navbar-center - Center section
	navbar-end - Right section (50% width)

 Summary

 Functions

 navbar(assigns)

 Renders a responsive navigation bar.

 navbar_dropdown(assigns)

 Renders a dropdown menu typically used in navbar for mobile navigation.

 simple_navbar(assigns)

 Renders a simple navbar with just a title/brand.

 Functions

 navbar(assigns)

 @spec navbar(map()) :: Phoenix.LiveView.Rendered.t()

Renders a responsive navigation bar.
Attributes
	:class - Additional CSS classes for the navbar container.
	:sticky - Whether navbar is sticky/fixed at top. Defaults to false.
	:shadow - Whether to show shadow. Defaults to true.
	:bordered - Whether to show bottom border. Defaults to false.
	:transparent - Whether background is transparent. Defaults to false.

Slots
	:start_section - Left section content.
	:center_section - Center section content.
	:end_section - Right section content.

Examples
<.navbar sticky>
 <:start_section>
 Logo
 </:start_section>
 <:end_section>
 <button class="btn">Action</button>
 </:end_section>
</.navbar>
Attributes
	class (:any) - Defaults to nil.
	sticky (:boolean) - Defaults to false.
	shadow (:boolean) - Defaults to true.
	bordered (:boolean) - Defaults to false.
	transparent (:boolean) - Defaults to false.
	Global attributes are accepted.

Slots
	start_section
	center_section
	end_section

 navbar_dropdown(assigns)

 @spec navbar_dropdown(map()) :: Phoenix.LiveView.Rendered.t()

Renders a dropdown menu typically used in navbar for mobile navigation.
Attributes
	:class - Additional CSS classes for the dropdown container.

Slots
	:trigger - The element that triggers the dropdown (required).
	:content - Menu items to show in dropdown (required).

Examples
<.navbar_dropdown>
 <:trigger>
 <button class="btn btn-ghost btn-circle">
 <svg>...</svg>
 </button>
 </:trigger>
 <:content>
 <a>Home
 <a>About
 <a>Contact
 </:content>
</.navbar_dropdown>
Attributes
	class (:any) - Defaults to nil.

Slots
	trigger (required)
	content (required)

 simple_navbar(assigns)

 @spec simple_navbar(map()) :: Phoenix.LiveView.Rendered.t()

Renders a simple navbar with just a title/brand.
Attributes
	:title - The brand/title text to display (required).
	:href - Link destination for the title. Defaults to "/".
	:class - Additional CSS classes.

Examples
<.simple_navbar title="My App" />
<.simple_navbar title="Brand" href="/home" />
Attributes
	title (:string) (required)
	href (:string) - Defaults to "/".
	class (:any) - Defaults to nil.
	Global attributes are accepted.

MithrilUI.Components.Pagination

A pagination component for navigating through pages of content.
Provides various styles of pagination controls including numbered pages,
previous/next buttons, and showing results information.
Examples
Basic pagination:
<.pagination
 current_page={@page}
 total_pages={10}
 on_page_change="page_changed"
/>
With showing results:
<.pagination
 current_page={@page}
 total_pages={@total_pages}
 total_entries={@total}
 page_size={20}
 on_page_change="page_changed"
 show_info
/>
DaisyUI Classes
The component uses the following DaisyUI classes:
	join - Groups buttons together
	btn - Button styling

 Summary

 Functions

 icon_pagination(assigns)

 Renders pagination with icon arrows instead of text.

 pagination(assigns)

 Renders a pagination control.

 simple_pagination(assigns)

 Renders a simple previous/next pagination without page numbers.

 Functions

 icon_pagination(assigns)

 @spec icon_pagination(map()) :: Phoenix.LiveView.Rendered.t()

Renders pagination with icon arrows instead of text.
Attributes
	:current_page - The currently active page number (required).
	:total_pages - Total number of pages (required).
	:on_page_change - Event name to send when page changes.
	:size - Button size: xs, sm, md, lg. Defaults to "sm".
	:class - Additional CSS classes.

Examples
<.icon_pagination current_page={5} total_pages={10} on_page_change="page" />
Attributes
	current_page (:integer) (required)
	total_pages (:integer) (required)
	on_page_change (:string) - Defaults to nil.
	size (:string) - Defaults to "sm". Must be one of "xs", "sm", "md", or "lg".
	class (:any) - Defaults to nil.
	sibling_count (:integer) - Defaults to 1.
	boundary_count (:integer) - Defaults to 1.
	Global attributes are accepted.

 pagination(assigns)

 @spec pagination(map()) :: Phoenix.LiveView.Rendered.t()

Renders a pagination control.
Attributes
	:current_page - The currently active page number (required).
	:total_pages - Total number of pages (required).
	:on_page_change - Event name to send when page changes.
	:page_param - Parameter name for the page number. Defaults to "page".
	:size - Button size: xs, sm, md, lg. Defaults to "sm".
	:show_info - Whether to show "Showing X to Y of Z" text. Defaults to false.
	:total_entries - Total number of entries (required if show_info is true).
	:page_size - Number of entries per page (required if show_info is true).
	:sibling_count - Number of pages to show on each side of current. Defaults to 1.
	:boundary_count - Number of pages to show at start/end. Defaults to 1.
	:class - Additional CSS classes.

Examples
<.pagination
 current_page={5}
 total_pages={20}
 on_page_change="go_to_page"
/>
Attributes
	current_page (:integer) (required)
	total_pages (:integer) (required)
	on_page_change (:string) - Defaults to nil.
	page_param (:string) - Defaults to "page".
	size (:string) - Defaults to "sm". Must be one of "xs", "sm", "md", or "lg".
	show_info (:boolean) - Defaults to false.
	total_entries (:integer) - Defaults to nil.
	page_size (:integer) - Defaults to nil.
	sibling_count (:integer) - Defaults to 1.
	boundary_count (:integer) - Defaults to 1.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 simple_pagination(assigns)

 @spec simple_pagination(map()) :: Phoenix.LiveView.Rendered.t()

Renders a simple previous/next pagination without page numbers.
Attributes
	:current_page - The currently active page number (required).
	:total_pages - Total number of pages (required).
	:on_page_change - Event name to send when page changes.
	:size - Button size: xs, sm, md, lg. Defaults to "sm".
	:show_current - Whether to show "Page X of Y". Defaults to true.
	:class - Additional CSS classes.

Examples
<.simple_pagination
 current_page={@page}
 total_pages={@total_pages}
 on_page_change="change_page"
/>
Attributes
	current_page (:integer) (required)
	total_pages (:integer) (required)
	on_page_change (:string) - Defaults to nil.
	size (:string) - Defaults to "sm". Must be one of "xs", "sm", "md", or "lg".
	show_current (:boolean) - Defaults to true.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

MithrilUI.Components.Popover

Popover component for displaying rich contextual content.
Popovers are similar to tooltips but can contain more complex content
including titles, descriptions, actions, and custom HTML.
Examples
Basic popover with title and content:
<.popover id="user-info">
 <:trigger>
 <button class="btn">Show Info</button>
 </:trigger>
 <:title>User Information</:title>
 <:content>
 <p>This is detailed information about the user.</p>
 </:content>
</.popover>
Popover with different positions:
<.popover id="pop-top" position={:top}>...</.popover>
<.popover id="pop-right" position={:right}>...</.popover>
Click-triggered popover:
<.popover id="click-pop" trigger={:click}>...</.popover>
DaisyUI Classes
	dropdown - Container for click-triggered popovers
	dropdown-content - Content container
	Positioned with dropdown-top, dropdown-bottom, etc.

 Summary

 Functions

 hide_popover(id)

 Hides a controlled popover.

 hide_popover(js, id)

 popover(assigns)

 Renders a hover-triggered popover.

 popover_click(assigns)

 Renders a click-triggered popover using DaisyUI dropdown.

 popover_controlled(assigns)

 Renders a popover controlled by LiveView.JS for programmatic control.

 show_popover(id)

 Shows a controlled popover.

 Functions

 hide_popover(id)

 @spec hide_popover(String.t()) :: Phoenix.LiveView.JS.t()

Hides a controlled popover.
Examples
<button phx-click={MithrilUI.Components.Popover.hide_popover("my-popover")}>
 Hide
</button>

 hide_popover(js, id)

 @spec hide_popover(Phoenix.LiveView.JS.t(), String.t()) :: Phoenix.LiveView.JS.t()

 popover(assigns)

 @spec popover(map()) :: Phoenix.LiveView.Rendered.t()

Renders a hover-triggered popover.
For hover popovers, we use CSS-based visibility that shows on hover.
Attributes
	:id - Unique identifier for the popover.
	:position - Position relative to trigger. Defaults to :bottom.
	:class - Additional CSS classes for the popover content.
	:content_class - Additional CSS classes for the inner content.

Slots
	:trigger - Required. The element that triggers the popover.
	:title - Optional title/header for the popover.
	:content - Required. The main popover content.
	:footer - Optional footer with actions.

Examples
<.popover id="help-popover" position={:right}>
 <:trigger>
 <button class="btn btn-circle btn-ghost btn-sm">?</button>
 </:trigger>
 <:title>Need Help?</:title>
 <:content>
 <p>Click here to learn more about this feature.</p>
 </:content>
 <:footer>
 View Documentation
 </:footer>
</.popover>
Attributes
	id (:string) - Unique identifier. Defaults to nil.
	position (:atom) - Position relative to trigger. Defaults to :bottom. Must be one of :top, :bottom, :left, or :right.
	class (:any) - Additional CSS classes for popover. Defaults to nil.
	content_class (:string) - Additional CSS classes for content area. Defaults to nil.

Slots
	trigger (required) - Trigger element.
	title - Popover title/header.
	content (required) - Main popover content.
	footer - Optional footer.

 popover_click(assigns)

 @spec popover_click(map()) :: Phoenix.LiveView.Rendered.t()

Renders a click-triggered popover using DaisyUI dropdown.
This variant uses JavaScript to toggle visibility on click.
Attributes
	:id - Required. Unique identifier for the popover.
	:position - Position relative to trigger. Defaults to :bottom.
	:align - Horizontal alignment. Defaults to :start.
	:class - Additional CSS classes.

Slots
	:trigger - Required. The element that triggers the popover.
	:title - Optional title/header.
	:content - Required. Main content.
	:footer - Optional footer.

Examples
<.popover_click id="actions-menu" position={:bottom} align={:end}>
 <:trigger>
 <button class="btn btn-ghost btn-sm">
 <.icon name="ellipsis-vertical" class="w-5 h-5" />
 </button>
 </:trigger>
 <:content>
 <ul class="menu menu-sm">
 <a>Edit
 <a>Delete

 </:content>
</.popover_click>
Attributes
	id (:string) (required) - Unique identifier.
	position (:atom) - Position relative to trigger. Defaults to :bottom. Must be one of :top, :bottom, :left, or :right.
	align (:atom) - Horizontal alignment. Defaults to :start. Must be one of :start, :center, or :end.
	class (:any) - Additional CSS classes. Defaults to nil.
	content_class (:string) - Additional CSS classes for content. Defaults to nil.

Slots
	trigger (required) - Trigger element.
	title - Popover title.
	content (required) - Main content.
	footer - Optional footer.

 popover_controlled(assigns)

 @spec popover_controlled(map()) :: Phoenix.LiveView.Rendered.t()

Renders a popover controlled by LiveView.JS for programmatic control.
This variant allows showing/hiding via show_popover/1 and hide_popover/1.
Attributes
	:id - Required. Unique identifier.
	:position - Position relative to trigger.
	:show - Whether popover is initially visible.
	:on_cancel - JS command to run when popover is dismissed.

Examples
<.popover_controlled id="confirm-pop" show={@show_popover}>
 <:trigger>
 <button phx-click={show_popover("confirm-pop")}>Show</button>
 </:trigger>
 <:content>
 <p>Are you sure?</p>
 <button phx-click={hide_popover("confirm-pop")}>Yes</button>
 </:content>
</.popover_controlled>
Attributes
	id (:string) (required) - Unique identifier.
	position (:atom) - Position relative to trigger. Defaults to :bottom. Must be one of :top, :bottom, :left, or :right.
	show (:boolean) - Initial visibility. Defaults to false.
	on_cancel (Phoenix.LiveView.JS) - JS command on dismiss. Defaults to %Phoenix.LiveView.JS{ops: []}.
	class (:any) - Additional CSS classes. Defaults to nil.

Slots
	trigger (required) - Trigger element.
	title - Popover title.
	content (required) - Main content.
	footer - Optional footer.

 show_popover(id)

 @spec show_popover(String.t()) :: Phoenix.LiveView.JS.t()

Shows a controlled popover.
Examples
<button phx-click={MithrilUI.Components.Popover.show_popover("my-popover")}>
 Show
</button>

MithrilUI.Components.Progress

Progress bar component for displaying completion status.
Supports determinate (with value) and indeterminate (loading) states,
with optional labels and semantic color variants.
Examples
Basic progress:
<.progress value={75} max={100} />
With label:
<.progress value={3} max={10} label="Step 3 of 10" />
Indeterminate loading:
<.progress />
Semantic variants:
<.progress value={100} max={100} variant="success" />
<.progress value={25} max={100} variant="warning" />
DaisyUI Classes
	progress - Base progress bar styling
	progress-primary - Primary color
	progress-secondary - Secondary color
	progress-accent - Accent color
	progress-info - Info color
	progress-success - Success color
	progress-warning - Warning color
	progress-error - Error color

 Summary

 Functions

 progress(assigns)

 Renders a progress bar.

 radial_progress(assigns)

 Renders a radial progress indicator.

 Functions

 progress(assigns)

 @spec progress(map()) :: Phoenix.LiveView.Rendered.t()

Renders a progress bar.
Attributes
	:value - Current progress value (omit for indeterminate).
	:max - Maximum value. Defaults to 100.
	:variant - Color variant.
	:label - Optional label text above the bar.
	:show_percentage - Show percentage text. Defaults to false.
	:size - Height size: xs, sm, md, lg. Defaults to "md".
	:class - Additional CSS classes.

Examples
<.progress value={50} max={100} variant="primary" show_percentage />

<.progress label="Uploading..." />
Attributes
	value (:integer) - Defaults to nil.
	max (:integer) - Defaults to 100.
	variant (:string) - Defaults to nil.Must be one of "primary", "secondary", "accent", "info", "success", "warning", "error", or nil.
	label (:string) - Defaults to nil.
	show_percentage (:boolean) - Defaults to false.
	size (:string) - Defaults to "md". Must be one of "xs", "sm", "md", or "lg".
	class (:any) - Defaults to nil.

 radial_progress(assigns)

 @spec radial_progress(map()) :: Phoenix.LiveView.Rendered.t()

Renders a radial progress indicator.
Attributes
	:value - Progress percentage (0-100).
	:size - Size in rem or CSS units. Defaults to "4rem".
	:thickness - Border thickness. Defaults to "4px".
	:variant - Color variant.
	:class - Additional CSS classes.

Examples
<.radial_progress value={70} />

<.radial_progress value={100} variant="success" size="6rem" />
Attributes
	value (:integer) (required)
	size (:string) - Defaults to "4rem".
	thickness (:string) - Defaults to "4px".
	variant (:string) - Defaults to nil.Must be one of "primary", "secondary", "accent", "info", "success", "warning", "error", or nil.
	class (:any) - Defaults to nil.

Slots
	inner_block

MithrilUI.Components.Radio

Radio button component for selecting one option from a group.
Examples
Basic usage:
<.radio name="plan" value="basic" label="Basic Plan" />
<.radio name="plan" value="pro" label="Pro Plan" />
<.radio name="plan" value="enterprise" label="Enterprise Plan" />
With form field:
<.radio field={@form[:plan]} value="basic" label="Basic Plan" />
Pre-selected:
<.radio name="color" value="red" label="Red" checked={true} />
Disabled:
<.radio name="tier" value="premium" label="Premium (Coming Soon)" disabled={true} />

 Summary

 Functions

 radio(assigns)

 Renders a radio button input with label.

 Functions

 radio(assigns)

 @spec radio(map()) :: Phoenix.LiveView.Rendered.t()

Renders a radio button input with label.
Attributes
	:id - Input element ID
	:name - Input name attribute (required)
	:label - Label text (required)
	:value - Radio value (required)
	:checked - Whether radio is selected (default: false)
	:field - Phoenix form field struct
	:disabled - Disable the input
	:class - Additional CSS classes for the radio
	Global attributes are passed through

Slots
None.
Attributes
	id (:any) - Defaults to nil.
	name (:any)
	label (:string) (required)
	value (:any) (required)
	checked (:boolean) - Defaults to false.
	field (Phoenix.HTML.FormField) - Form field struct.
	errors (:list) - Defaults to [].
	disabled (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

MithrilUI.Components.Range

Range slider component for selecting numeric values within a range.
Examples
Basic usage:
<.range name="volume" min={0} max={100} value={50} />
With form field:
<.range field={@form[:volume]} min={0} max={100} label="Volume" />
With step:
<.range name="rating" min={1} max={5} step={1} value={3} />

 Summary

 Functions

 range(assigns)

 Renders a range slider input.

 Functions

 range(assigns)

 @spec range(map()) :: Phoenix.LiveView.Rendered.t()

Renders a range slider input.
Attributes
	:id - Input element ID
	:name - Input name attribute
	:label - Label text displayed above the range
	:value - Current value
	:min - Minimum value (default: 0)
	:max - Maximum value (default: 100)
	:step - Step increment (default: 1)
	:field - Phoenix form field struct
	:errors - List of error messages
	:show_value - Whether to display current value (default: false)
	:disabled - Disable the input
	:class - Additional CSS classes
	Global attributes are passed through

Slots
None.
Attributes
	id (:any) - Defaults to nil.
	name (:any)
	label (:string) - Defaults to nil.
	value (:any) - Defaults to nil.
	min (:integer) - Defaults to 0.
	max (:integer) - Defaults to 100.
	step (:integer) - Defaults to 1.
	field (Phoenix.HTML.FormField) - Form field struct.
	errors (:list) - Defaults to [].
	show_value (:boolean) - Display current value. Defaults to false.
	disabled (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

MithrilUI.Components.Rating

Rating component for displaying and collecting star ratings.
Examples
Basic rating:
<.rating name="product-rating" value={4} />
Read-only rating:
<.rating name="display-rating" value={4} readonly />
Half-star rating:
<.rating name="half-rating" value={3.5} half />
DaisyUI Classes
	rating - Base rating styling
	rating-{size} - Size variants (xs, sm, md, lg, xl)
	rating-half - Enable half-star ratings
	rating-hidden - Hide the clearing option
	mask mask-star - Star shape
	mask mask-star-2 - Alternative star shape
	mask mask-heart - Heart shape

 Summary

 Functions

 rating(assigns)

 Renders an interactive star rating input.

 rating_breakdown(assigns)

 Renders an advanced rating breakdown with progress bars.

 rating_display(assigns)

 Renders a read-only rating display using divs instead of inputs.

 rating_with_text(assigns)

 Renders a rating with adjacent text showing the numeric value.

 Functions

 rating(assigns)

 @spec rating(map()) :: Phoenix.LiveView.Rendered.t()

Renders an interactive star rating input.
Attributes
	:name - Input name for form submission (required).
	:value - Current rating value. Defaults to 0.
	:max - Maximum rating value. Defaults to 5.
	:size - Rating size: xs, sm, md, lg, xl.
	:shape - Icon shape: star, star-2, heart. Defaults to "star".
	:color - Background color class for active stars. Defaults to "bg-yellow-400".
	:readonly - Disable user interaction. Defaults to false.
	:half - Enable half-star ratings. Defaults to false.
	:clearable - Allow clearing the rating. Defaults to true.
	:class - Additional CSS classes.

Examples
<.rating name="rating-1" value={3} />

<.rating name="rating-2" value={4} size="lg" color="bg-orange-400" />

<.rating name="rating-3" value={2.5} half />
Attributes
	name (:string) (required)
	value (:float) - Defaults to 0.0.
	max (:integer) - Defaults to 5.
	size (:string) - Defaults to nil.Must be one of "xs", "sm", "md", "lg", "xl", or nil.
	shape (:string) - Defaults to "star". Must be one of "star", "star-2", or "heart".
	color (:string) - Defaults to "bg-yellow-400".
	readonly (:boolean) - Defaults to false.
	half (:boolean) - Defaults to false.
	clearable (:boolean) - Defaults to true.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 rating_breakdown(assigns)

 @spec rating_breakdown(map()) :: Phoenix.LiveView.Rendered.t()

Renders an advanced rating breakdown with progress bars.
Attributes
	:ratings - Map of star ratings to counts (required).
Example: %{5 => 70, 4 => 20, 3 => 5, 2 => 3, 1 => 2}
	:total - Total number of reviews. If nil, calculated from ratings.
	:class - Additional CSS classes.

Examples
<.rating_breakdown ratings={%{5 => 70, 4 => 20, 3 => 5, 2 => 3, 1 => 2}} />
Attributes
	ratings (:map) (required)
	total (:integer) - Defaults to nil.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 rating_display(assigns)

 @spec rating_display(map()) :: Phoenix.LiveView.Rendered.t()

Renders a read-only rating display using divs instead of inputs.
Attributes
	:value - Rating value to display (required).
	:max - Maximum rating value. Defaults to 5.
	:size - Rating size: xs, sm, md, lg, xl.
	:shape - Icon shape: star, star-2, heart. Defaults to "star".
	:color - Background color class for filled stars.
	:empty_color - Background color class for empty stars.
	:class - Additional CSS classes.

Examples
<.rating_display value={4.5} />

<.rating_display value={3} color="bg-orange-400" empty_color="bg-gray-300" />
Attributes
	value (:float) (required)
	max (:integer) - Defaults to 5.
	size (:string) - Defaults to nil.Must be one of "xs", "sm", "md", "lg", "xl", or nil.
	shape (:string) - Defaults to "star". Must be one of "star", "star-2", or "heart".
	color (:string) - Defaults to "bg-yellow-400".
	empty_color (:string) - Defaults to "bg-gray-300".
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 rating_with_text(assigns)

 @spec rating_with_text(map()) :: Phoenix.LiveView.Rendered.t()

Renders a rating with adjacent text showing the numeric value.
Attributes
	:value - Rating value (required).
	:max - Maximum rating value. Defaults to 5.
	:size - Rating size.
	:show_max - Show "X out of Y" format. Defaults to false.
	:class - Additional CSS classes.

Examples
<.rating_with_text value={4.5} />

<.rating_with_text value={4} show_max />
Attributes
	value (:float) (required)
	max (:integer) - Defaults to 5.
	size (:string) - Defaults to nil.Must be one of "xs", "sm", "md", "lg", "xl", or nil.
	shape (:string) - Defaults to "star". Must be one of "star", "star-2", or "heart".
	color (:string) - Defaults to "bg-yellow-400".
	show_max (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

MithrilUI.Components.Select

Select dropdown component for choosing one or more options from a list.
Supports single and multiple selection modes, integration with Phoenix forms,
and automatic error display.
Examples
Basic usage with tuple options:
<.select
 name="country"
 label="Country"
 options={[{"United States", "us"}, {"Canada", "ca"}, {"Mexico", "mx"}]}
/>
With simple value options:
<.select name="color" options={["Red", "Green", "Blue"]} />
With form field integration:
<.select field={@form[:role]} options={[{"Admin", "admin"}, {"User", "user"}]} />
Multiple selection:
<.select
 name="tags[]"
 label="Tags"
 options={[{"Elixir", "elixir"}, {"Phoenix", "phoenix"}, {"LiveView", "liveview"}]}
 multiple
/>
With prompt placeholder:
<.select
 name="category"
 options={[{"Books", "books"}, {"Electronics", "electronics"}]}
 prompt="Select a category"
/>

 Summary

 Functions

 select(assigns)

 Renders a select dropdown input.

 Functions

 select(assigns)

 @spec select(map()) :: Phoenix.LiveView.Rendered.t()

Renders a select dropdown input.
Attributes
	:id - Select element ID
	:name - Select name attribute
	:label - Label text displayed above the select
	:value - Currently selected value (or list for multiple)
	:field - Phoenix form field struct for automatic integration
	:options - List of options as {label, value} tuples or simple values
	:prompt - Placeholder option displayed when no selection is made
	:errors - List of error messages to display
	:help_text - Helper text displayed below the select
	:required - Mark the field as required
	:disabled - Disable the select
	:multiple - Allow multiple selections
	:class - Additional CSS classes for the wrapper
	Global attributes are passed through to the select element

Slots
None.
Attributes
	id (:any) - Defaults to nil.
	name (:any)
	label (:string) - Defaults to nil.
	value (:any) - Defaults to nil.
	field (Phoenix.HTML.FormField) - Form field struct.
	options (:list) (required) - List of {label, value} tuples or values.
	prompt (:string) - Placeholder option. Defaults to nil.
	errors (:list) - Defaults to [].
	help_text (:string) - Defaults to nil.
	required (:boolean) - Defaults to false.
	disabled (:boolean) - Defaults to false.
	multiple (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

MithrilUI.Components.Sidebar

A sidebar navigation component with support for menu items, submenus, and collapsible sections.
The sidebar uses DaisyUI's menu component for styling and supports various
features like icons, badges, dividers, and nested dropdown menus.
Examples
Basic sidebar:
<.sidebar>
 <:item icon="home" navigate="/dashboard">Dashboard</:item>
 <:item icon="users" navigate="/users">Users</:item>
 <:item icon="settings" navigate="/settings">Settings</:item>
</.sidebar>
With title and dividers:
<.sidebar>
 <:title>Main Menu</:title>
 <:item navigate="/dashboard">Dashboard</:item>
 <:item navigate="/analytics">Analytics</:item>
 <:divider />
 <:title>Settings</:title>
 <:item navigate="/profile">Profile</:item>
 <:item navigate="/account">Account</:item>
</.sidebar>
DaisyUI Classes
The component uses the following DaisyUI classes:
	menu - Base menu container
	menu-title - Section heading
	menu-lg, menu-md, menu-sm, menu-xs - Size variants

 Summary

 Functions

 menu(assigns)

 Renders a simple menu list without the sidebar wrapper.

 sidebar(assigns)

 Renders a sidebar navigation menu.

 submenu_item(assigns)

 Renders a menu item for use inside submenu slots.

 Functions

 menu(assigns)

 @spec menu(map()) :: Phoenix.LiveView.Rendered.t()

Renders a simple menu list without the sidebar wrapper.
Useful for embedding menus inside other containers like drawers or dropdowns.
Attributes
	:class - Additional CSS classes.
	:size - Menu size: xs, sm, md, lg, xl.
	:horizontal - Whether menu is horizontal. Defaults to false.

Slots
	:item - Menu items.

Examples
<.menu horizontal>
 <:item href="/">Home</:item>
 <:item href="/about">About</:item>
 <:item href="/contact">Contact</:item>
</.menu>
Attributes
	class (:any) - Defaults to nil.
	size (:string) - Defaults to nil.Must be one of "xs", "sm", "md", "lg", "xl", or nil.
	horizontal (:boolean) - Defaults to false.

Slots
	item - Accepts attributes:	navigate (:string)
	patch (:string)
	href (:string)
	active (:boolean)
	disabled (:boolean)
	class (:any)

 sidebar(assigns)

 @spec sidebar(map()) :: Phoenix.LiveView.Rendered.t()

Renders a sidebar navigation menu.
Attributes
	:class - Additional CSS classes for the sidebar container.
	:size - Menu size: xs, sm, md, lg, xl. Defaults to nil (default size).
	:rounded - Whether menu items have rounded corners. Defaults to true.
	:width - Width class for the sidebar. Defaults to "w-64".

Slots
	:title - Section titles/headings.
	:item - Menu items with navigation support.	:navigate - LiveView navigation path.
	:patch - LiveView patch path.
	:href - Standard link href.
	:active - Whether this item is currently active.
	:disabled - Whether this item is disabled.
	:icon - Icon name to display (optional).
	:badge - Badge text to display (optional).
	:badge_variant - Badge variant: primary, secondary, accent, etc.

	:divider - Visual separator between sections.
	:submenu - Collapsible submenu section.	:label - The submenu trigger label.
	:open - Whether submenu is open by default.

Examples
<.sidebar size="lg">
 <:title>Navigation</:title>
 <:item navigate="/" active>Home</:item>
 <:item navigate="/about">About</:item>
 <:item navigate="/contact" badge="New" badge_variant="primary">Contact</:item>
 <:divider />
 <:submenu label="Settings">
 <:item navigate="/settings/profile">Profile</:item>
 <:item navigate="/settings/account">Account</:item>
 </:submenu>
</.sidebar>
Attributes
	class (:any) - Defaults to nil.
	size (:string) - Defaults to nil.Must be one of "xs", "sm", "md", "lg", "xl", or nil.
	rounded (:boolean) - Defaults to true.
	width (:string) - Defaults to "w-64".
	Global attributes are accepted.

Slots
	title
	item - Accepts attributes:	navigate (:string)
	patch (:string)
	href (:string)
	active (:boolean)
	disabled (:boolean)
	icon (:string)
	badge (:string)
	badge_variant (:string)
	class (:any)

	divider
	submenu - Accepts attributes:	label (:string)
	open (:boolean)

 submenu_item(assigns)

 @spec submenu_item(map()) :: Phoenix.LiveView.Rendered.t()

Renders a menu item for use inside submenu slots.
Attributes
	:navigate - LiveView navigation path.
	:patch - LiveView patch path.
	:href - Standard link href.
	:active - Whether item is active.
	:disabled - Whether item is disabled.

Examples
<.submenu_item navigate="/settings/profile">Profile</.submenu_item>
Attributes
	navigate (:string) - Defaults to nil.
	patch (:string) - Defaults to nil.
	href (:string) - Defaults to nil.
	active (:boolean) - Defaults to false.
	disabled (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.

Slots
	inner_block (required)

MithrilUI.Components.Skeleton

Skeleton loading placeholder component for content that is loading.
Skeletons provide a visual placeholder that mimics the shape of content
while it's being loaded, improving perceived performance.
Examples
Basic skeleton:
<.skeleton class="h-4 w-full" />
Text skeleton:
<.skeleton_text lines={3} />
Card skeleton:
<.skeleton_card />
Avatar skeleton:
<.skeleton_avatar size="lg" />
DaisyUI Classes
	skeleton - Base skeleton with animation

 Summary

 Functions

 skeleton(assigns)

 Renders a basic skeleton placeholder.

 skeleton_avatar(assigns)

 Renders a skeleton placeholder for avatars.

 skeleton_card(assigns)

 Renders a skeleton card placeholder.

 skeleton_list(assigns)

 Renders a skeleton list placeholder.

 skeleton_table(assigns)

 Renders a skeleton table placeholder.

 skeleton_text(assigns)

 Renders skeleton lines mimicking text content.

 Functions

 skeleton(assigns)

 @spec skeleton(map()) :: Phoenix.LiveView.Rendered.t()

Renders a basic skeleton placeholder.
Attributes
	:class - CSS classes to define shape and size (required for dimensions).
	:rounded - Border radius style. Defaults to "md".

Examples
<.skeleton class="h-4 w-32" />

<.skeleton class="h-32 w-full" rounded="lg" />

<.skeleton class="h-12 w-12" rounded="full" />
Attributes
	class (:any) - Defaults to nil.
	rounded (:string) - Defaults to "md". Must be one of "none", "sm", "md", "lg", or "full".

 skeleton_avatar(assigns)

 @spec skeleton_avatar(map()) :: Phoenix.LiveView.Rendered.t()

Renders a skeleton placeholder for avatars.
Attributes
	:size - Avatar size: xs, sm, md, lg, xl. Defaults to "md".
	:shape - Shape: circle, square. Defaults to "circle".
	:class - Additional CSS classes.

Examples
<.skeleton_avatar />

<.skeleton_avatar size="lg" shape="square" />
Attributes
	size (:string) - Defaults to "md". Must be one of "xs", "sm", "md", "lg", or "xl".
	shape (:string) - Defaults to "circle". Must be one of "circle", or "square".
	class (:any) - Defaults to nil.

 skeleton_card(assigns)

 @spec skeleton_card(map()) :: Phoenix.LiveView.Rendered.t()

Renders a skeleton card placeholder.
Attributes
	:with_image - Whether to include image placeholder. Defaults to true.
	:lines - Number of text lines. Defaults to 3.
	:class - Additional CSS classes.

Examples
<.skeleton_card />

<.skeleton_card with_image={false} lines={2} />
Attributes
	with_image (:boolean) - Defaults to true.
	lines (:integer) - Defaults to 3.
	class (:any) - Defaults to nil.

 skeleton_list(assigns)

 @spec skeleton_list(map()) :: Phoenix.LiveView.Rendered.t()

Renders a skeleton list placeholder.
Attributes
	:items - Number of list items. Defaults to 5.
	:with_avatar - Include avatar placeholder. Defaults to false.
	:class - Additional CSS classes.

Examples
<.skeleton_list />

<.skeleton_list items={3} with_avatar />
Attributes
	items (:integer) - Defaults to 5.
	with_avatar (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.

 skeleton_table(assigns)

 @spec skeleton_table(map()) :: Phoenix.LiveView.Rendered.t()

Renders a skeleton table placeholder.
Attributes
	:rows - Number of table rows. Defaults to 5.
	:columns - Number of columns. Defaults to 4.
	:class - Additional CSS classes.

Examples
<.skeleton_table />

<.skeleton_table rows={10} columns={3} />
Attributes
	rows (:integer) - Defaults to 5.
	columns (:integer) - Defaults to 4.
	class (:any) - Defaults to nil.

 skeleton_text(assigns)

 @spec skeleton_text(map()) :: Phoenix.LiveView.Rendered.t()

Renders skeleton lines mimicking text content.
Attributes
	:lines - Number of text lines. Defaults to 3.
	:class - Additional CSS classes for the container.

Examples
<.skeleton_text />

<.skeleton_text lines={5} />
Attributes
	lines (:integer) - Defaults to 3.
	class (:any) - Defaults to nil.

MithrilUI.Components.SpeedDial

Speed dial component for floating action buttons with expandable menus.
Displays a primary action button that reveals additional action buttons
on hover or click. Supports various positions, orientations, and
tooltip labels.

 Summary

 Functions

 speed_dial(assigns)

 Renders a speed dial with action buttons.

 speed_dial_horizontal(assigns)

 Renders a horizontal speed dial variant.

 speed_dial_labeled(assigns)

 Renders a speed dial with labeled actions (text alongside icons).

 speed_dial_simple(assigns)

 Renders a simple speed dial with slots for custom content.

 Functions

 speed_dial(assigns)

Renders a speed dial with action buttons.
Examples
<.speed_dial id="actions">
 <:action icon="share" label="Share" />
 <:action icon="print" label="Print" />
 <:action icon="download" label="Download" />
</.speed_dial>
Attributes
	id (:string) (required)
	position (:string) - Defaults to "bottom-right". Must be one of "bottom-right", "bottom-left", "top-right", or "top-left".
	orientation (:string) - Defaults to "vertical". Must be one of "vertical", or "horizontal".
	trigger (:string) - Defaults to "hover". Must be one of "hover", or "click".
	icon (:string) - Defaults to "plus". Must be one of "plus", "menu", or "dots".
	color (:string) - Defaults to "primary".
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	action (required) - Accepts attributes:	icon (:string)
	label (:string)
	href (:string)
	click (:string)
	color (:string)
	class (:any)

 speed_dial_horizontal(assigns)

Renders a horizontal speed dial variant.
Examples
<.speed_dial_horizontal id="horizontal">
 <:action icon="share" label="Share" />
 <:action icon="print" label="Print" />
</.speed_dial_horizontal>
Attributes
	id (:string) (required)
	position (:string) - Defaults to "bottom-right". Must be one of "bottom-right", "bottom-left", "top-right", or "top-left".
	color (:string) - Defaults to "primary".
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	action (required) - Accepts attributes:	icon (:string)
	label (:string)
	href (:string)
	click (:string)
	color (:string)

 speed_dial_labeled(assigns)

Renders a speed dial with labeled actions (text alongside icons).
Examples
<.speed_dial_labeled id="labeled-dial">
 <:action icon="share" label="Share" />
 <:action icon="edit" label="Edit" />
</.speed_dial_labeled>
Attributes
	id (:string) (required)
	position (:string) - Defaults to "bottom-right". Must be one of "bottom-right", "bottom-left", "top-right", or "top-left".
	color (:string) - Defaults to "primary".
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	action (required) - Accepts attributes:	icon (:string)
	label (:string) (required)
	href (:string)
	click (:string)
	color (:string)

 speed_dial_simple(assigns)

Renders a simple speed dial with slots for custom content.
Examples
<.speed_dial_simple id="fab" position="bottom-right">
 <:trigger>
 <svg class="w-6 h-6">...</svg>
 </:trigger>
 <:menu>
 <button class="btn btn-circle btn-sm">A</button>
 <button class="btn btn-circle btn-sm">B</button>
 </:menu>
</.speed_dial_simple>
Attributes
	id (:string) (required)
	position (:string) - Defaults to "bottom-right". Must be one of "bottom-right", "bottom-left", "top-right", or "top-left".
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	trigger (required)
	menu (required)

MithrilUI.Components.Spinner

Loading spinner component for indicating processing or loading states.
Provides multiple spinner styles and sizes to match your UI needs.
Examples
Basic spinner:
<.spinner />
With size and variant:
<.spinner size="lg" variant="primary" />
Different types:
<.spinner type="dots" />
<.spinner type="ring" />
<.spinner type="ball" />
DaisyUI Classes
	loading - Base loading animation
	loading-spinner - Spinner animation
	loading-dots - Dots animation
	loading-ring - Ring animation
	loading-ball - Ball animation
	loading-bars - Bars animation
	loading-infinity - Infinity animation

 Summary

 Functions

 spinner(assigns)

 Renders a loading spinner.

 spinner_with_text(assigns)

 Renders a spinner with accompanying text.

 Functions

 spinner(assigns)

 @spec spinner(map()) :: Phoenix.LiveView.Rendered.t()

Renders a loading spinner.
Attributes
	:type - Animation type: spinner, dots, ring, ball, bars, infinity.
Defaults to "spinner".
	:size - Size: xs, sm, md, lg. Defaults to "md".
	:variant - Color variant for the spinner.
	:label - Accessible label. Defaults to "Loading".
	:class - Additional CSS classes.

Examples
<.spinner />

<.spinner type="dots" size="lg" variant="primary" />

<.spinner label="Saving changes..." />
Attributes
	type (:string) - Defaults to "spinner". Must be one of "spinner", "dots", "ring", "ball", "bars", or "infinity".
	size (:string) - Defaults to "md". Must be one of "xs", "sm", "md", or "lg".
	variant (:string) - Defaults to nil.Must be one of "primary", "secondary", "accent", "neutral", "info", "success", "warning", "error", or nil.
	label (:string) - Defaults to "Loading".
	class (:any) - Defaults to nil.

 spinner_with_text(assigns)

 @spec spinner_with_text(map()) :: Phoenix.LiveView.Rendered.t()

Renders a spinner with accompanying text.
Attributes
Same as spinner/1 plus:
	:text - Text to display alongside spinner.
	:position - Text position: left, right, top, bottom. Defaults to "right".

Examples
<.spinner_with_text text="Loading..." />

<.spinner_with_text text="Please wait" position="bottom" />
Attributes
	type (:string) - Defaults to "spinner". Must be one of "spinner", "dots", "ring", "ball", "bars", or "infinity".
	size (:string) - Defaults to "md". Must be one of "xs", "sm", "md", or "lg".
	variant (:string) - Defaults to nil.Must be one of "primary", "secondary", "accent", "neutral", "info", "success", "warning", "error", or nil.
	text (:string) (required)
	position (:string) - Defaults to "right". Must be one of "left", "right", "top", or "bottom".
	class (:any) - Defaults to nil.

MithrilUI.Components.Stepper

Stepper component for displaying multi-step progress indicators.
Examples
Basic stepper:
<.steps>
 <.step status="complete">Register</.step>
 <.step status="current">Choose plan</.step>
 <.step>Purchase</.step>
</.steps>
Vertical stepper:
<.steps vertical>
 <.step status="complete">Step 1</.step>
 <.step status="current">Step 2</.step>
</.steps>
DaisyUI Classes
	steps - Container class
	step - Individual step class
	step-{color} - Step color variants
	steps-vertical - Vertical layout
	steps-horizontal - Horizontal layout

 Summary

 Functions

 breadcrumb_steps(assigns)

 Renders a breadcrumb-style stepper for wizard navigation.

 detailed_steps(assigns)

 Renders a detailed stepper with numbers, titles, and descriptions.

 step(assigns)

 Renders an individual step.

 steps(assigns)

 Renders a steps container.

 Functions

 breadcrumb_steps(assigns)

 @spec breadcrumb_steps(map()) :: Phoenix.LiveView.Rendered.t()

Renders a breadcrumb-style stepper for wizard navigation.
Attributes
	:steps - List of step labels.
	:current - Current step index (0-based).
	:class - Additional CSS classes.

Examples
<.breadcrumb_steps steps={["Cart", "Shipping", "Payment", "Review"]} current={2} />
Attributes
	steps (:list) (required)
	current (:integer) - Defaults to 0.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 detailed_steps(assigns)

 @spec detailed_steps(map()) :: Phoenix.LiveView.Rendered.t()

Renders a detailed stepper with numbers, titles, and descriptions.
Attributes
	:steps - List of step maps with :title, :description, and optional :status.
	:current - Current step index (0-based).
	:vertical - Display vertically. Defaults to false.
	:class - Additional CSS classes.

Examples
<.detailed_steps
 steps={[
 %{title: "Account", description: "Create your account"},
 %{title: "Profile", description: "Set up your profile"},
 %{title: "Complete", description: "Start using the app"}
]}
 current={1}
/>
Attributes
	steps (:list) (required)
	current (:integer) - Defaults to 0.
	vertical (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 step(assigns)

 @spec step(map()) :: Phoenix.LiveView.Rendered.t()

Renders an individual step.
Attributes
	:status - Step status: pending, current, complete. Defaults to "pending".
	:color - Step color when active/complete.
	:icon - Custom icon content for the step indicator.
	:data_content - Custom content to show in step circle (e.g., checkmark).
	:class - Additional CSS classes.

Slots
	:inner_block - Step label content (required).

Examples
<.step status="complete">Register</.step>

<.step status="current" color="primary">Choose plan</.step>

<.step data_content="✓" status="complete">Done</.step>
Attributes
	status (:string) - Defaults to "pending". Must be one of "pending", "current", or "complete".
	color (:string) - Defaults to nil.Must be one of "primary", "secondary", "accent", "neutral", "info", "success", "warning", "error", or nil.
	data_content (:string) - Defaults to nil.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	icon
	inner_block (required)

 steps(assigns)

 @spec steps(map()) :: Phoenix.LiveView.Rendered.t()

Renders a steps container.
Attributes
	:vertical - Display steps vertically. Defaults to false.
	:responsive - Switch to horizontal on larger screens. Defaults to false.
	:class - Additional CSS classes.

Slots
	:inner_block - Step components (required).

Examples
<.steps>
 <.step>Step 1</.step>
 <.step>Step 2</.step>
</.steps>

<.steps vertical>
 <.step status="complete">Done</.step>
 <.step status="current">In Progress</.step>
</.steps>
Attributes
	vertical (:boolean) - Defaults to false.
	responsive (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	inner_block (required)

MithrilUI.Components.Table

Table component for displaying tabular data with optional sorting and selection.
Examples
Basic table:
<.table id="users" rows={@users}>
 <:col :let={user} label="Name"><%= user.name %></:col>
 <:col :let={user} label="Email"><%= user.email %></:col>
</.table>
With row click:
<.table id="users" rows={@users} row_click={fn user -> JS.navigate("/users/#{user.id}") end}>
 <:col :let={user} label="Name"><%= user.name %></:col>
</.table>
DaisyUI Classes
	table - Base table styling
	table-zebra - Alternating row colors
	table-pin-rows - Pin header rows
	table-pin-cols - Pin first column

 Summary

 Functions

 table(assigns)

 Renders a data table.

 Functions

 table(assigns)

 @spec table(map()) :: Phoenix.LiveView.Rendered.t()

Renders a data table.
Attributes
	:id - Required. Table identifier.
	:rows - The list of data rows.
	:row_id - Function to generate row id. Defaults to using row index.
	:row_click - JS command to run on row click.
	:row_class - Function or string for row classes.
	:zebra - Enable zebra striping. Defaults to false.
	:pin_rows - Pin header rows. Defaults to false.
	:pin_cols - Pin first column. Defaults to false.
	:compact - Use compact sizing. Defaults to false.
	:class - Additional CSS classes.

Slots
	:col - Column definitions with :label for header.	:label - Column header text.
	:class - Column cell classes.

Examples
<.table id="products" rows={@products} zebra>
 <:col :let={p} label="SKU"><%= p.sku %></:col>
 <:col :let={p} label="Name"><%= p.name %></:col>
 <:col :let={p} label="Price" class="text-right">$<%= p.price %></:col>
</.table>
Attributes
	id (:string) (required)
	rows (:list) (required)
	row_id (:any) - Function to generate row id. Defaults to nil.
	row_click (:any) - JS command for row click. Defaults to nil.
	row_class (:any) - Function or string for row classes. Defaults to nil.
	zebra (:boolean) - Defaults to false.
	pin_rows (:boolean) - Defaults to false.
	pin_cols (:boolean) - Defaults to false.
	compact (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.

Slots
	col (required) - Accepts attributes:	label (:string)
	class (:any)

	action - Action column slot.

MithrilUI.Components.Tabs

A tabbed interface component for organizing content into sections.
Supports multiple visual styles including bordered, lifted, and boxed variants,
as well as various sizes and positioning options.
Examples
Basic tabs:
<.tabs>
 <:tab label="Tab 1" active>Content for tab 1</:tab>
 <:tab label="Tab 2">Content for tab 2</:tab>
 <:tab label="Tab 3">Content for tab 3</:tab>
</.tabs>
Boxed tabs:
<.tabs variant="boxed">
 <:tab label="Overview" active>Overview content</:tab>
 <:tab label="Details">Details content</:tab>
</.tabs>
DaisyUI Classes
The component uses the following DaisyUI classes:
	tabs - Base container
	tab - Individual tab item
	tab-active - Active tab state
	tabs-bordered - Bordered variant
	tabs-lifted - Lifted variant
	tabs-boxed - Boxed variant
	tab-content - Tab content container

 Summary

 Functions

 controlled_tabs(assigns)

 Renders tabs controlled by LiveView events.

 radio_tabs(assigns)

 Renders radio-based tabs that work without JavaScript.

 tabs(assigns)

 Renders a tabbed interface.

 Functions

 controlled_tabs(assigns)

 @spec controlled_tabs(map()) :: Phoenix.LiveView.Rendered.t()

Renders tabs controlled by LiveView events.
Each tab click triggers a phx-click event instead of showing inline content.
Attributes
	:tabs - List of tab definitions as maps with :id, :label, and optional :disabled keys (required).
	:active_tab - ID of the currently active tab (required).
	:on_change - Event name to trigger when tab is clicked.
	:variant - Visual style: default, bordered, lifted, boxed. Defaults to "bordered".
	:size - Tab size: xs, sm, md, lg, xl.
	:class - Additional CSS classes.

Examples
<.controlled_tabs
 tabs={[
 %{id: "overview", label: "Overview"},
 %{id: "details", label: "Details"},
 %{id: "settings", label: "Settings", disabled: true}
]}
 active_tab={@current_tab}
 on_change="change_tab"
/>
Attributes
	tabs (:list) (required)
	active_tab (:any) (required)
	on_change (:string) - Defaults to nil.
	variant (:string) - Defaults to "bordered". Must be one of "default", "bordered", "lifted", or "boxed".
	size (:string) - Defaults to nil.Must be one of "xs", "sm", "md", "lg", "xl", or nil.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 radio_tabs(assigns)

 @spec radio_tabs(map()) :: Phoenix.LiveView.Rendered.t()

Renders radio-based tabs that work without JavaScript.
Uses HTML radio inputs for tab switching, useful for static content.
Attributes
	:name - Radio group name (required).
	:variant - Visual style: default, bordered, lifted, boxed. Defaults to "lifted".
	:size - Tab size: xs, sm, md, lg, xl.
	:class - Additional CSS classes.

Slots
	:tab - Tab items with content.	:label - Tab label (required).
	:checked - Whether this tab is initially checked.

Examples
<.radio_tabs name="my-tabs">
 <:tab label="Tab 1" checked>Content 1</:tab>
 <:tab label="Tab 2">Content 2</:tab>
 <:tab label="Tab 3">Content 3</:tab>
</.radio_tabs>
Attributes
	name (:string) (required)
	variant (:string) - Defaults to "lifted". Must be one of "default", "bordered", "lifted", or "boxed".
	size (:string) - Defaults to nil.Must be one of "xs", "sm", "md", "lg", "xl", or nil.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	tab (required) - Accepts attributes:	label (:string) (required)
	checked (:boolean)

 tabs(assigns)

 @spec tabs(map()) :: Phoenix.LiveView.Rendered.t()

Renders a tabbed interface.
Attributes
	:variant - Visual style: default, bordered, lifted, boxed. Defaults to "bordered".
	:size - Tab size: xs, sm, md, lg, xl. Defaults to nil (default size).
	:class - Additional CSS classes for the tabs container.

Slots
	:tab - Tab items with content.	:label - Tab button label (required).
	:active - Whether this tab is currently active.
	:disabled - Whether this tab is disabled.
	:icon - Optional icon content.

Examples
<.tabs variant="lifted" size="lg">
 <:tab label="Home" active icon={home_icon()}>Home content</:tab>
 <:tab label="Profile">Profile content</:tab>
 <:tab label="Settings" disabled>Settings content</:tab>
</.tabs>
Attributes
	variant (:string) - Defaults to "bordered". Must be one of "default", "bordered", "lifted", or "boxed".
	size (:string) - Defaults to nil.Must be one of "xs", "sm", "md", "lg", "xl", or nil.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

Slots
	tab (required) - Accepts attributes:	label (:string) (required)
	active (:boolean)
	disabled (:boolean)
	icon (:any)

MithrilUI.Components.Text

Text component for paragraphs and inline text styling.
Provides consistent text styles with control over size, weight,
color, alignment, and decorations.
Examples
Basic paragraph:
<.text>This is a paragraph of text.</.text>
With styles:
<.text size={:lg} color={:muted} align={:center}>
 Centered muted text
</.text>
As a span:
<.text tag={:span} weight={:semibold} color={:primary}>
 Highlighted
</.text>

 Summary

 Functions

 lead(assigns)

 Renders a lead/intro paragraph with larger styling.

 mark(assigns)

 Renders a highlighted/marked text span.

 small(assigns)

 Renders small/fine print text.

 text(assigns)

 Renders a text element with consistent styling.

 Functions

 lead(assigns)

 @spec lead(map()) :: Phoenix.LiveView.Rendered.t()

Renders a lead/intro paragraph with larger styling.
Attributes
	:class - Additional CSS classes.

Examples
<.lead>
 This is an introductory paragraph that stands out from the rest.
</.lead>
Attributes
	class (:any) - Additional CSS classes. Defaults to nil.
	Global attributes are accepted. Additional HTML attributes.

Slots
	inner_block (required) - Lead content.

 mark(assigns)

 @spec mark(map()) :: Phoenix.LiveView.Rendered.t()

Renders a highlighted/marked text span.
Attributes
	:color - Highlight color. Options: :default, :primary, :secondary, :accent.

Examples
<.mark>highlighted text</.mark>
<.mark color={:primary}>primary highlight</.mark>
Attributes
	color (:atom) - Highlight color. Defaults to :default. Must be one of :default, :primary, :secondary, or :accent.
	class (:any) - Additional CSS classes. Defaults to nil.
	Global attributes are accepted. Additional HTML attributes.

Slots
	inner_block (required) - Marked content.

 small(assigns)

 @spec small(map()) :: Phoenix.LiveView.Rendered.t()

Renders small/fine print text.
Examples
<.small>Terms and conditions apply.</.small>
Attributes
	class (:any) - Additional CSS classes. Defaults to nil.
	Global attributes are accepted. Additional HTML attributes.

Slots
	inner_block (required) - Small text content.

 text(assigns)

 @spec text(map()) :: Phoenix.LiveView.Rendered.t()

Renders a text element with consistent styling.
Attributes
	:tag - HTML element to use. Defaults to :p.
	:size - Text size. Options: :xs, :sm, :base, :lg, :xl.
	:color - Text color. Options: :default, :primary, :secondary, :accent, :muted, :success, :warning, :error, :info.
	:weight - Font weight. Options: :thin, :light, :normal, :medium, :semibold, :bold.
	:align - Text alignment. Options: :left, :center, :right, :justify.
	:leading - Line height. Options: :tight, :snug, :normal, :relaxed, :loose.
	:italic - Render in italic. Defaults to false.
	:underline - Add underline. Defaults to false.
	:strikethrough - Add strikethrough. Defaults to false.
	:uppercase - Transform to uppercase. Defaults to false.
	:class - Additional CSS classes.

Slots
	:inner_block - Required. Text content.

Examples
<.text>Regular paragraph text</.text>
<.text size={:sm} color={:muted}>Small muted text</.text>
<.text weight={:bold} underline>Important text</.text>
Attributes
	tag (:string) - HTML element to use. Defaults to "p". Must be one of "p", "span", or "div".
	size (:atom) - Text size. Defaults to :base. Must be one of :xs, :sm, :base, :lg, or :xl.
	color (:atom) - Text color. Defaults to :default. Must be one of :default, :primary, :secondary, :accent, :muted, :success, :warning, :error, or :info.
	weight (:atom) - Font weight. Defaults to :normal. Must be one of :thin, :light, :normal, :medium, :semibold, or :bold.
	align (:atom) - Text alignment. Defaults to nil. Must be one of nil, :left, :center, :right, or :justify.
	leading (:atom) - Line height. Defaults to :normal. Must be one of :tight, :snug, :normal, :relaxed, or :loose.
	italic (:boolean) - Render in italic. Defaults to false.
	underline (:boolean) - Add underline. Defaults to false.
	strikethrough (:boolean) - Add strikethrough. Defaults to false.
	uppercase (:boolean) - Transform to uppercase. Defaults to false.
	class (:any) - Additional CSS classes. Defaults to nil.
	Global attributes are accepted. Additional HTML attributes.

Slots
	inner_block (required) - Text content.

MithrilUI.Components.Textarea

Textarea component for multiline text input.
Provides a styled textarea with support for labels, help text, validation errors,
and various states like disabled and readonly.
Examples
Basic usage:
<.textarea name="description" placeholder="Enter description..." />
With form field:
<.textarea field={@form[:description]} label="Description" />
With help text and rows:
<.textarea
 field={@form[:bio]}
 label="Bio"
 help_text="Tell us about yourself"
 rows={5}
/>
Disabled state:
<.textarea name="notes" label="Notes" disabled />

 Summary

 Functions

 textarea(assigns)

 Renders a textarea input with label and error messages.

 Functions

 textarea(assigns)

 @spec textarea(map()) :: Phoenix.LiveView.Rendered.t()

Renders a textarea input with label and error messages.
Attributes
	:id - Textarea element ID
	:name - Textarea name attribute
	:label - Label text displayed above the textarea
	:value - Current value
	:field - Phoenix form field struct
	:errors - List of error messages
	:help_text - Helper text displayed below the textarea
	:placeholder - Placeholder text
	:required - Whether the field is required
	:disabled - Disable the textarea
	:readonly - Make the textarea read-only
	:rows - Number of visible text rows (default: 3)
	:class - Additional CSS classes for the textarea
	Global attributes are passed through (autocomplete, autofocus, minlength, maxlength, etc.)

Slots
None.
Attributes
	id (:any) - Defaults to nil.
	name (:any)
	label (:string) - Defaults to nil.
	value (:any) - Defaults to nil.
	field (Phoenix.HTML.FormField) - Form field struct.
	errors (:list) - Defaults to [].
	help_text (:string) - Defaults to nil.
	placeholder (:string) - Defaults to nil.
	required (:boolean) - Defaults to false.
	disabled (:boolean) - Defaults to false.
	readonly (:boolean) - Defaults to false.
	rows (:integer) - Defaults to 3.
	class (:any) - Defaults to nil.
	Global attributes are accepted. Supports all globals plus: ["autocomplete", "autofocus", "minlength", "maxlength", "form", "wrap"].

MithrilUI.Components.ThemeSwitcher

Theme switcher component for DaisyUI theme selection.
Provides dropdown and button-based theme switching using the data-theme
attribute. Works with the theme-change JavaScript library for persistence.
Available Themes
DaisyUI provides 35+ built-in themes including:
	Light/Dark: light, dark
	Aesthetic: cupcake, bumblebee, emerald, synthwave, retro, cyberpunk, valentine, etc.
	Specialized: corporate, business, luxury, dracula, nord, sunset, etc.

 Summary

 Functions

 theme_preview_selector(assigns)

 Renders a theme selector with visual previews.

 theme_radio_group(assigns)

 Renders an inline theme switcher as radio buttons.

 theme_switcher(assigns)

 Renders a theme switcher dropdown.

 theme_toggle(assigns)

 Renders a simple light/dark mode toggle button.

 Functions

 theme_preview_selector(assigns)

Renders a theme selector with visual previews.
Examples
<.theme_preview_selector />
<.theme_preview_selector themes={["light", "dark", "cupcake"]} columns={2} />
Attributes
	id (:string) - Defaults to "theme-preview-selector".
	themes (:list) - Defaults to nil.
	columns (:integer) - Defaults to 3.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 theme_radio_group(assigns)

Renders an inline theme switcher as radio buttons.
Examples
<.theme_radio_group name="theme" themes={["light", "dark", "synthwave"]} />
Attributes
	name (:string) (required)
	themes (:list) - Defaults to nil.
	selected (:string) - Defaults to nil.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 theme_switcher(assigns)

Renders a theme switcher dropdown.
Examples
<.theme_switcher />
<.theme_switcher themes={["light", "dark", "cupcake"]} />
<.theme_switcher label="Theme" />
Attributes
	id (:string) - Defaults to "theme-switcher".
	themes (:list) - List of theme names to show. Defaults to all DaisyUI themes. Defaults to nil.
	label (:string) - Optional label text. Defaults to nil.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

 theme_toggle(assigns)

Renders a simple light/dark mode toggle button.
Examples
<.theme_toggle />
<.theme_toggle light_theme="corporate" dark_theme="business" />
Attributes
	id (:string) - Defaults to "theme-toggle".
	light_theme (:string) - Theme name for light mode. Defaults to "light".
	dark_theme (:string) - Theme name for dark mode. Defaults to "dark".
	class (:any) - Defaults to nil.
	Global attributes are accepted.

MithrilUI.Components.Timeline

Timeline component for displaying chronological events or steps.
Examples
Basic timeline:
<.timeline>
 <:item>First event</:item>
 <:item>Second event</:item>
 <:item>Third event</:item>
</.timeline>
With dates and status:
<.timeline>
 <:item time="2024-01-01" status="done">Project started</:item>
 <:item time="2024-02-15" status="current">In development</:item>
 <:item time="2024-03-01" status="pending">Launch</:item>
</.timeline>
DaisyUI Classes
	timeline - Base timeline styling
	timeline-vertical - Vertical layout
	timeline-horizontal - Horizontal layout
	timeline-snap-icon - Snap icon to center

 Summary

 Functions

 simple_timeline(assigns)

 Renders a simple timeline from a list of events.

 timeline(assigns)

 Renders a timeline.

 Functions

 simple_timeline(assigns)

 @spec simple_timeline(map()) :: Phoenix.LiveView.Rendered.t()

Renders a simple timeline from a list of events.
Attributes
	:events - List of event maps with :time, :title, :description, :status keys.

Examples
<.simple_timeline events={[
 %{time: "9:00 AM", title: "Meeting", status: "done"},
 %{time: "2:00 PM", title: "Review", status: "current"}
]} />
Attributes
	events (:list) (required)
	horizontal (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.

 timeline(assigns)

 @spec timeline(map()) :: Phoenix.LiveView.Rendered.t()

Renders a timeline.
Attributes
	:horizontal - Horizontal layout. Defaults to false (vertical).
	:compact - Compact spacing. Defaults to false.
	:snap_icon - Snap icons to center. Defaults to true.
	:class - Additional CSS classes.

Slots
	:item - Timeline items.	:time - Timestamp or date text.
	:title - Item title.
	:status - Item status: done, current, pending.
	:icon - Custom icon content.
	:position - Content position: start, end (for horizontal). Defaults based on index.

Examples
<.timeline>
 <:item time="Jan 2024" title="Started" status="done">
 Project kickoff and planning phase.
 </:item>
 <:item time="Feb 2024" title="Development" status="current">
 Building core features.
 </:item>
</.timeline>
Attributes
	horizontal (:boolean) - Defaults to false.
	compact (:boolean) - Defaults to false.
	snap_icon (:boolean) - Defaults to true.
	class (:any) - Defaults to nil.

Slots
	item (required) - Accepts attributes:	time (:string)
	title (:string)
	status (:string)
	position (:string)

	icon

MithrilUI.Components.Toast

Toast notification component with auto-dismiss and stacking support.
Toasts are brief messages that appear temporarily to provide feedback
about an action or system status.
Examples
Basic toast:
<.toast id="saved-toast" variant="success">
 Changes saved successfully!
</.toast>
Toast with auto-dismiss:
<.toast id="info-toast" variant="info" auto_dismiss={3000}>
 Processing your request...
</.toast>
Toast container for stacking:
<.toast_container position="top-end">
 <.toast :for={toast <- @toasts} id={toast.id} variant={toast.variant}>
 <%= toast.message %>
 </.toast>
</.toast_container>
DaisyUI Classes
	toast - Toast container for positioning
	alert - Individual toast styling

 Summary

 Functions

 hide_toast(id)

 Hides a toast with animation.

 show_toast(id)

 Shows a toast with animation.

 toast(assigns)

 Renders a toast notification.

 toast_container(assigns)

 Renders a container for positioning toasts.

 Functions

 hide_toast(id)

 @spec hide_toast(String.t()) :: Phoenix.LiveView.JS.t()

Hides a toast with animation.

 show_toast(id)

 @spec show_toast(String.t()) :: Phoenix.LiveView.JS.t()

Shows a toast with animation.

 toast(assigns)

 @spec toast(map()) :: Phoenix.LiveView.Rendered.t()

Renders a toast notification.
Attributes
	:id - Required. Unique identifier for the toast.
	:variant - The toast type: info, success, warning, error.
	:auto_dismiss - Milliseconds before auto-dismiss (0 = no auto-dismiss).
	:dismissible - Whether to show dismiss button. Defaults to true.
	:class - Additional CSS classes.

Examples
<.toast id="my-toast" variant="success" auto_dismiss={5000}>
 Operation completed!
</.toast>
Attributes
	id (:string) (required)
	variant (:string) - Defaults to "info". Must be one of "info", "success", "warning", or "error".
	auto_dismiss (:integer) - Auto-dismiss after N milliseconds (0 = disabled). Defaults to 0.
	dismissible (:boolean) - Defaults to true.
	class (:any) - Defaults to nil.

Slots
	inner_block (required)

 toast_container(assigns)

 @spec toast_container(map()) :: Phoenix.LiveView.Rendered.t()

Renders a container for positioning toasts.
Attributes
	:position - Where to position toasts on screen.
Supported: top-start, top-center, top-end, middle-start, middle-center, middle-end, bottom-start, bottom-center, bottom-end.
	:class - Additional CSS classes.

Examples
<.toast_container position="top-end">
 <%= for toast <- @toasts do %>
 <.toast id={toast.id} variant={toast.variant}><%= toast.message %></.toast>
 <% end %>
</.toast_container>
Attributes
	position (:string) - Defaults to "bottom-end". Must be one of "top-start", "top-center", "top-end", "middle-start", "middle-center", "middle-end", "bottom-start", "bottom-center", or "bottom-end".
	class (:any) - Defaults to nil.

Slots
	inner_block (required)

MithrilUI.Components.Toggle

Toggle switch component for boolean on/off states.
Styled like an iOS switch, ideal for settings and preferences.
Examples
Basic usage:
<.toggle name="notifications" label="Enable notifications" />
With form field:
<.toggle field={@form[:dark_mode]} label="Dark mode" />
Checked by default:
<.toggle name="auto_save" label="Auto-save" checked={true} />
Without label:
<.toggle name="enabled" />
Disabled:
<.toggle name="premium_feature" label="Premium Feature" disabled={true} />

 Summary

 Functions

 toggle(assigns)

 Renders a toggle switch input.

 Functions

 toggle(assigns)

 @spec toggle(map()) :: Phoenix.LiveView.Rendered.t()

Renders a toggle switch input.
Attributes
	:id - Input element ID
	:name - Input name attribute
	:label - Label text (optional)
	:checked - Whether toggle is on (default: false)
	:field - Phoenix form field struct
	:errors - List of error messages
	:disabled - Disable the input
	:class - Additional CSS classes for the toggle
	Global attributes are passed through

Slots
None.
Attributes
	id (:any) - Defaults to nil.
	name (:any)
	label (:string) - Defaults to nil.
	checked (:boolean) - Defaults to false.
	field (Phoenix.HTML.FormField) - Form field struct.
	errors (:list) - Defaults to [].
	disabled (:boolean) - Defaults to false.
	class (:any) - Defaults to nil.
	Global attributes are accepted.

MithrilUI.Components.Tooltip

Tooltip component for displaying contextual information on hover.
Tooltips are small pop-ups that appear when users hover over an element,
providing additional context or information.
Examples
Basic tooltip with text:
<.tooltip text="This is helpful information">
 <button class="btn">Hover me</button>
</.tooltip>
Tooltip with different positions:
<.tooltip text="Top tooltip" position={:top}>...</.tooltip>
<.tooltip text="Bottom tooltip" position={:bottom}>...</.tooltip>
<.tooltip text="Left tooltip" position={:left}>...</.tooltip>
<.tooltip text="Right tooltip" position={:right}>...</.tooltip>
Colored tooltips:
<.tooltip text="Primary tooltip" color={:primary}>...</.tooltip>
<.tooltip text="Error tooltip" color={:error}>...</.tooltip>
Always open tooltip:
<.tooltip text="Always visible" open>...</.tooltip>
DaisyUI Classes
	tooltip - Base tooltip wrapper
	tooltip-top / tooltip-bottom / tooltip-left / tooltip-right - Position
	tooltip-primary / tooltip-secondary / etc. - Colors
	tooltip-open - Force tooltip to always show

 Summary

 Functions

 tooltip(assigns)

 Renders a tooltip wrapper around content.

 tooltip_content(assigns)

 Renders a tooltip with custom HTML content instead of plain text.

 Functions

 tooltip(assigns)

 @spec tooltip(map()) :: Phoenix.LiveView.Rendered.t()

Renders a tooltip wrapper around content.
Attributes
	:text - Required. The tooltip text to display.
	:position - Tooltip position. Defaults to :top.
Options: :top, :bottom, :left, :right.
	:color - Tooltip color variant.
Options: :neutral, :primary, :secondary, :accent, `:info`, `:success`, `:warning`, `:error`.

	:open - Force tooltip to always be visible. Defaults to false.
	:class - Additional CSS classes.

Slots
	:inner_block - Required. The trigger element that shows the tooltip.

Examples
<.tooltip text="Click to save your changes">
 <button class="btn btn-primary">Save</button>
</.tooltip>

<.tooltip text="Required field" color={:error} position={:right}>
 *
</.tooltip>
Attributes
	text (:string) (required) - Tooltip text content.
	position (:atom) - Position relative to trigger element. Defaults to :top. Must be one of :top, :bottom, :left, or :right.
	color (:atom) - Color variant. Defaults to nil. Must be one of nil, :neutral, :primary, :secondary, :accent, :info, :success, :warning, or :error.
	open (:boolean) - Force tooltip to always be visible. Defaults to false.
	class (:any) - Additional CSS classes. Defaults to nil.

Slots
	inner_block (required) - Trigger element.

 tooltip_content(assigns)

 @spec tooltip_content(map()) :: Phoenix.LiveView.Rendered.t()

Renders a tooltip with custom HTML content instead of plain text.
Use this variant when you need rich content like icons, formatted text,
or interactive elements in the tooltip.
Attributes
	:position - Tooltip position. Defaults to :top.
	:color - Tooltip color variant.
	:open - Force tooltip to always be visible.
	:class - Additional CSS classes.

Slots
	:content - Required. The tooltip content (can include HTML).
	:inner_block - Required. The trigger element.

Examples
<.tooltip_content position={:bottom}>
 <:content>
 <div class="flex items-center gap-2">
 <.icon name="info" class="w-4 h-4" />
 More information here
 </div>
 </:content>
 <button class="btn">Hover me</button>
</.tooltip_content>
Attributes
	position (:atom) - Position relative to trigger element. Defaults to :top. Must be one of :top, :bottom, :left, or :right.
	color (:atom) - Color variant. Defaults to nil. Must be one of nil, :neutral, :primary, :secondary, :accent, :info, :success, :warning, or :error.
	open (:boolean) - Force tooltip to always be visible. Defaults to false.
	class (:any) - Additional CSS classes. Defaults to nil.

Slots
	content (required) - Rich tooltip content.
	inner_block (required) - Trigger element.

MithrilUI.Theme

Runtime theme management for Mithril UI.
This module provides functions to query available themes, get the default theme,
and generate theme metadata for UI components like theme switchers.
Configuration
config/config.exs
config :mithril_ui,
 default_theme: "light",
 dark_theme: "dark",
 builtin_themes: :all, # or [:light, :dark, :corporate] or :none
 themes: [
 %{
 name: "brand_light",
 label: "Brand Light",
 extends: "light",
 color_scheme: :light,
 colors: %{
 primary: "#4F46E5",
 primary_content: "#FFFFFF"
 }
 }
]
Built-in DaisyUI Themes
The following 35 themes are available when builtin_themes: :all:
light, dark, cupcake, bumblebee, emerald, corporate, synthwave, retro,
cyberpunk, valentine, halloween, garden, forest, aqua, lofi, pastel,
fantasy, wireframe, black, luxury, dracula, cmyk, autumn, business,
acid, lemonade, night, coffee, winter, dim, nord, sunset,
caramellatte, abyss, silk

 Summary

 Functions

 available_themes()

 Returns the list of all available theme names (builtin + custom).

 builtin_themes()

 Returns the list of all built-in DaisyUI theme names.

 dark_theme()

 Returns the dark mode theme name from configuration.

 default_theme()

 Returns the default theme name from configuration.

 get_custom_theme(name)

 Returns a custom theme definition by name, or nil if not found.

 theme_color_scheme(name)

 Returns the color scheme (:light or :dark) for a theme.

 theme_exists?(name)

 Checks if a theme exists in the available themes.

 theme_label(name)

 Returns the human-readable label for a theme.

 theme_options()

 Returns theme metadata for UI display (e.g., theme switcher dropdowns).

 Functions

 available_themes()

 @spec available_themes() :: [String.t()]

Returns the list of all available theme names (builtin + custom).
Examples
iex> MithrilUI.Theme.available_themes()
["light", "dark", "cupcake", ...]

 builtin_themes()

 @spec builtin_themes() :: [String.t()]

Returns the list of all built-in DaisyUI theme names.

 dark_theme()

 @spec dark_theme() :: String.t()

Returns the dark mode theme name from configuration.
This theme is used when the user's system prefers dark mode.
Defaults to "dark" if not configured.
Examples
iex> MithrilUI.Theme.dark_theme()
"dark"

 default_theme()

 @spec default_theme() :: String.t()

Returns the default theme name from configuration.
Defaults to "light" if not configured.
Examples
iex> MithrilUI.Theme.default_theme()
"light"

 get_custom_theme(name)

 @spec get_custom_theme(String.t()) :: map() | nil

Returns a custom theme definition by name, or nil if not found.

 theme_color_scheme(name)

 @spec theme_color_scheme(String.t()) :: :light | :dark

Returns the color scheme (:light or :dark) for a theme.
Examples
iex> MithrilUI.Theme.theme_color_scheme("light")
:light

iex> MithrilUI.Theme.theme_color_scheme("dark")
:dark

 theme_exists?(name)

 @spec theme_exists?(String.t()) :: boolean()

Checks if a theme exists in the available themes.
Examples
iex> MithrilUI.Theme.theme_exists?("light")
true

iex> MithrilUI.Theme.theme_exists?("nonexistent")
false

 theme_label(name)

 @spec theme_label(String.t()) :: String.t()

Returns the human-readable label for a theme.
For builtin themes, returns a capitalized version of the name.
For custom themes, returns the configured label or capitalized name.
Examples
iex> MithrilUI.Theme.theme_label("light")
"Light"

iex> MithrilUI.Theme.theme_label("cupcake")
"Cupcake"

 theme_options()

 @spec theme_options() :: [map()]

Returns theme metadata for UI display (e.g., theme switcher dropdowns).
Each theme includes:
	name - The theme identifier used in data-theme
	label - Human-readable display name
	color_scheme - :light or :dark

Examples
iex> MithrilUI.Theme.theme_options()
[
 %{name: "light", label: "Light", color_scheme: :light},
 %{name: "dark", label: "Dark", color_scheme: :dark},
 ...
]

MithrilUI.Theme.Generator

Generates DaisyUI-compatible theme CSS from Phoenix configuration.
This module reads custom theme definitions from the application config
and generates CSS that can be used with DaisyUI's theming system.
Usage
Define themes in your config:
config :mithril_ui,
 themes: [
 %{
 name: "brand_light",
 label: "Brand Light",
 color_scheme: :light,
 colors: %{
 primary: "#4F46E5",
 primary_content: "#FFFFFF",
 # ... other colors
 }
 }
]
Generate CSS:
MithrilUI.Theme.Generator.generate_css()
=> "[data-theme=\"brand_light\"] { ... }"
Or use the mix task:
mix mithril_ui.gen.themes

 Summary

 Functions

 default_output_path()

 Returns the default output path for generated theme CSS.

 generate_css()

 Generates CSS for all custom themes defined in config.

 theme_to_css(theme)

 Generates CSS for a single theme definition.

 write_css(path)

 Writes generated CSS to the specified file path.

 Functions

 default_output_path()

 @spec default_output_path() :: String.t()

Returns the default output path for generated theme CSS.

 generate_css()

 @spec generate_css() :: String.t()

Generates CSS for all custom themes defined in config.
Returns a string containing all theme CSS rules.

 theme_to_css(theme)

 @spec theme_to_css(map()) :: String.t()

Generates CSS for a single theme definition.
Parameters
	theme - A map containing theme configuration

Example
theme = %{
 name: "custom",
 color_scheme: :light,
 colors: %{primary: "#4F46E5"}
}
MithrilUI.Theme.Generator.theme_to_css(theme)

 write_css(path)

 @spec write_css(String.t()) :: :ok | {:error, term()}

Writes generated CSS to the specified file path.
Returns :ok on success or {:error, reason} on failure.

MithrilUI.Animations

Predefined animation presets for use with Phoenix.LiveView.JS commands.
These animations work with Tailwind CSS transition utilities and are designed
to be used with JS.show/2 and JS.hide/2 transition options.
Usage
import MithrilUI.Animations

JS.show(transition: modal_enter())
JS.hide(transition: modal_leave())
Animation Types
	Modal - Scale + fade for dialog overlays
	Dropdown - Fade + slide for menus
	Toast - Slide from edge for notifications
	Drawer - Full slide for side panels
	Fade - Simple opacity transitions
	Backdrop - Overlay fade animations
	Accordion - Expand/collapse for sections

Accessibility
All animations respect the user's prefers-reduced-motion preference when
combined with the provided CSS (see assets/css/mithril_ui/animations.css).

 Summary

 Functions

 accordion_collapse()

 Accordion collapse animation.

 accordion_expand()

 Accordion expand animation.

 alert_enter()

 Alert enter animation - slide down + fade.

 alert_leave()

 Alert leave animation.

 backdrop_enter()

 Backdrop fade in animation.

 backdrop_leave()

 Backdrop fade out animation.

 drawer_enter(atom)

 Drawer enter animation - slide from specified side.

 drawer_leave(atom)

 Drawer leave animation - slide to specified side.

 dropdown_enter()

 Dropdown enter animation - fade + slide down.

 dropdown_leave()

 Dropdown leave animation.

 fade_in()

 Simple fade in animation.

 fade_out()

 Simple fade out animation.

 modal_enter()

 Modal enter animation - fade + scale.

 modal_leave()

 Modal leave animation - fade + scale.

 toast_enter()

 Toast enter animation - slide in from right.

 toast_leave()

 Toast leave animation.

 tooltip_enter()

 Tooltip enter animation - fade + slight scale.

 tooltip_leave()

 Tooltip leave animation.

 Functions

 accordion_collapse()

 @spec accordion_collapse() :: {String.t(), String.t(), String.t()}

Accordion collapse animation.

 accordion_expand()

 @spec accordion_expand() :: {String.t(), String.t(), String.t()}

Accordion expand animation.

 alert_enter()

 @spec alert_enter() :: {String.t(), String.t(), String.t()}

Alert enter animation - slide down + fade.

 alert_leave()

 @spec alert_leave() :: {String.t(), String.t(), String.t()}

Alert leave animation.

 backdrop_enter()

 @spec backdrop_enter() :: {String.t(), String.t(), String.t()}

Backdrop fade in animation.

 backdrop_leave()

 @spec backdrop_leave() :: {String.t(), String.t(), String.t()}

Backdrop fade out animation.

 drawer_enter(atom)

 @spec drawer_enter(:left | :right) :: {String.t(), String.t(), String.t()}

Drawer enter animation - slide from specified side.
Parameters
	side - :left or :right

Example
JS.show(transition: drawer_enter(:left))

 drawer_leave(atom)

 @spec drawer_leave(:left | :right) :: {String.t(), String.t(), String.t()}

Drawer leave animation - slide to specified side.
Parameters
	side - :left or :right

 dropdown_enter()

 @spec dropdown_enter() :: {String.t(), String.t(), String.t()}

Dropdown enter animation - fade + slide down.

 dropdown_leave()

 @spec dropdown_leave() :: {String.t(), String.t(), String.t()}

Dropdown leave animation.

 fade_in()

 @spec fade_in() :: {String.t(), String.t(), String.t()}

Simple fade in animation.

 fade_out()

 @spec fade_out() :: {String.t(), String.t(), String.t()}

Simple fade out animation.

 modal_enter()

 @spec modal_enter() :: {String.t(), String.t(), String.t()}

Modal enter animation - fade + scale.
Example
<div
 id="my-modal"
 phx-mounted={JS.show(transition: modal_enter())}
>
 Modal content
</div>

 modal_leave()

 @spec modal_leave() :: {String.t(), String.t(), String.t()}

Modal leave animation - fade + scale.
Example
JS.hide(transition: modal_leave())

 toast_enter()

 @spec toast_enter() :: {String.t(), String.t(), String.t()}

Toast enter animation - slide in from right.

 toast_leave()

 @spec toast_leave() :: {String.t(), String.t(), String.t()}

Toast leave animation.

 tooltip_enter()

 @spec tooltip_enter() :: {String.t(), String.t(), String.t()}

Tooltip enter animation - fade + slight scale.

 tooltip_leave()

 @spec tooltip_leave() :: {String.t(), String.t(), String.t()}

Tooltip leave animation.

MithrilUI.Helpers

Utility functions for Mithril UI components.
Includes error translation, class handling, and other shared utilities.

 Summary

 Functions

 class_names(classes)

 Merges CSS classes, filtering out nil and empty values.

 field_errors(arg1)

 Extracts the errors list from a form field.

 has_errors?(arg1)

 Checks if a form field has any errors.

 normalize_class_attr(class)

 Normalizes a class value that may be a string, list, or nil.

 translate_error(error)

 Translates form field errors using the configured translator.

 unique_id(prefix \\ "mithril")

 Generates a unique ID for DOM elements.

 Functions

 class_names(classes)

 @spec class_names(list()) :: String.t()

Merges CSS classes, filtering out nil and empty values.
Supports multiple input formats for flexible class composition:
	Strings: "btn btn-primary"
	Lists: ["btn", "btn-primary"]
	Conditional tuples: {"btn-disabled", false} (included only if true)
	Nested lists: ["btn", ["btn-primary", "btn-lg"]]
	Mixed: ["btn", {"btn-disabled", @disabled}, @extra_class]

Examples
iex> MithrilUI.Helpers.class_names(["btn", "btn-primary", nil, ""])
"btn btn-primary"

iex> MithrilUI.Helpers.class_names(["btn", {"btn-primary", true}, {"btn-disabled", false}])
"btn btn-primary"

iex> MithrilUI.Helpers.class_names(["base", ["nested", "classes"]])
"base nested classes"
Usage in Components
All MithrilUI components accept the :class attribute as either a string or list,
enabling flexible conditional class composition:
Simple string
<.button class="my-custom-class">Click</.button>

List with conditionals
<.button class={[
 "w-12 h-12 p-0 rounded-lg",
 if(@selected, do: "ring-2 ring-white", else: "opacity-60")
]}>
 Click
</.button>

Using conditional tuples
<.card class={[
 "custom-card",
 {"shadow-xl", @elevated},
 {"border-primary", @highlighted}
]}>
 Content
</.card>

 field_errors(arg1)

 @spec field_errors(Phoenix.HTML.FormField.t() | nil) :: [String.t()]

Extracts the errors list from a form field.
Returns an empty list if the field has no errors or if the form
has not been validated yet.
Examples
iex> MithrilUI.Helpers.field_errors(%Phoenix.HTML.FormField{errors: [{"is required", []}]})
["is required"]

 has_errors?(arg1)

 @spec has_errors?(Phoenix.HTML.FormField.t() | nil) :: boolean()

Checks if a form field has any errors.
Examples
iex> MithrilUI.Helpers.has_errors?(%Phoenix.HTML.FormField{errors: [{"is required", []}]})
true

iex> MithrilUI.Helpers.has_errors?(%Phoenix.HTML.FormField{errors: []})
false

 normalize_class_attr(class)

 @spec normalize_class_attr(String.t() | list() | nil) :: String.t() | list() | nil

Normalizes a class value that may be a string, list, or nil.
This is useful when you need to programmatically work with class values
that could be in different formats.
Examples
iex> MithrilUI.Helpers.normalize_class_attr(nil)
nil

iex> MithrilUI.Helpers.normalize_class_attr("btn btn-primary")
"btn btn-primary"

iex> MithrilUI.Helpers.normalize_class_attr(["btn", "btn-primary"])
["btn", "btn-primary"]

iex> MithrilUI.Helpers.normalize_class_attr(["btn", nil, {"active", true}])
["btn", nil, {"active", true}]

 translate_error(error)

 @spec translate_error({String.t(), keyword()}) :: String.t()

Translates form field errors using the configured translator.
By default, uses simple string interpolation. Applications can configure
a custom translator function:
config :mithril_ui,
 error_translator: {MyAppWeb.CoreComponents, :translate_error}
Examples
iex> MithrilUI.Helpers.translate_error({"is required", []})
"is required"

iex> MithrilUI.Helpers.translate_error({"must be at least %{count} characters", [count: 8]})
"must be at least 8 characters"

 unique_id(prefix \\ "mithril")

 @spec unique_id(String.t()) :: String.t()

Generates a unique ID for DOM elements.
Examples
iex> MithrilUI.Helpers.unique_id("modal")
"modal-abc123def"

mix mithril_ui.gen.themes

Generates CSS file from custom theme definitions.
$ mix mithril_ui.gen.themes

Options
	--output, -o - Output file path (default: priv/static/css/mithril_ui_themes.css)
	--quiet, -q - Suppress output messages

Examples
$ mix mithril_ui.gen.themes
$ mix mithril_ui.gen.themes --output=assets/css/themes.css

mix mithril_ui.install

Installs Mithril UI into your Phoenix application.
$ mix mithril_ui.install

This task will:
	Create Mithril UI configuration file
	Update Tailwind config with DaisyUI plugin
	Add @source directive to app.css for class scanning
	Add JavaScript hooks to app.js
	Update root layout with theme attributes
	Print next steps

Options
	--no-tailwind - Skip Tailwind/DaisyUI configuration
	--no-js - Skip JavaScript hook installation
	--no-config - Skip config file generation
	--no-layout - Skip root layout modification
	--dry-run - Show what would be done without making changes

Examples
$ mix mithril_ui.install
$ mix mithril_ui.install --no-js
$ mix mithril_ui.install --dry-run

mix mithril_ui.mcp

Starts the Mithril UI MCP server for AI assistant integration.
$ mix mithril_ui.mcp

The MCP server provides AI assistants (like Claude Code) with access to:
	Component discovery and documentation
	Natural language component suggestions
	Usage examples and code snippets
	Theme information
	Accessibility guidelines

Claude Code Configuration
Add to your project's .mcp.json or Claude Code settings:
{
 "mcpServers": {
 "mithril-ui": {
 "command": "mix",
 "args": ["mithril_ui.mcp"],
 "cwd": "/path/to/your/project"
 }
 }
}
Available Tools
Once connected, AI assistants can use these tools:
	list_components - List all components or filter by category
	get_component - Get detailed schema for a component
	suggest_components - Natural language search
	get_examples - Get usage examples
	list_categories - List component categories
	list_themes - List available themes
	get_related - Get related components and alternatives

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

